b486678290
Library -Artifacts
83 lines
3.8 KiB
Markdown
83 lines
3.8 KiB
Markdown
# Rounded Polygon Node
|
|
|
|
## Description
|
|
|
|
Generates a rounded polygon shape based on input **UV** at the size specified by inputs **Width** and **Height**. The input **Sides** specifies the number of sides, and the input **Roundness** defines the roundness of each corner.
|
|
|
|
You can connect a [Tiling And Offset Node](Tiling-And-Offset-Node.md) to offset or tile the shape. To preserve the ability to offset the shape within the UV space, the shape does not automatically repeat if you tile it. To achieve a repeating rounded polygon effect, first connect your **UV** input through a [Fraction Node](Fraction-Node.md).
|
|
|
|
You can only use the Rounded Polygon Node in the **Fragment** [Shader Stage](Shader-Stage.md).
|
|
|
|
## Ports
|
|
|
|
| Name | Direction | Type | Binding | Description |
|
|
|:------------ |:-------------|:-----|:---|:---|
|
|
| UV | Input | Vector 2 | UV | Input UV value |
|
|
| Width | Input | Float | None | Rounded Polygon width |
|
|
| Height | Input | Float | None | Rounded Polygon height |
|
|
| Sides | Input | Float | None | Number of sides of the polygon |
|
|
| Roundness | Input | Float | None | Roundness of corners |
|
|
| Out | Output | Float | None | Output value |
|
|
|
|
## Generated Code Example
|
|
|
|
The following example code represents one possible outcome of this node.
|
|
|
|
```
|
|
void RoundedPolygon_Func_float(float2 UV, float Width, float Height, float Sides, float Roundness, out float Out)
|
|
{
|
|
UV = UV * 2. + float2(-1.,-1.);
|
|
float epsilon = 1e-6;
|
|
UV.x = UV.x / ( Width + (Width==0)*epsilon);
|
|
UV.y = UV.y / ( Height + (Height==0)*epsilon);
|
|
Roundness = clamp(Roundness, 1e-6, 1.);
|
|
float i_sides = floor( abs( Sides ) );
|
|
float fullAngle = 2. * PI / i_sides;
|
|
float halfAngle = fullAngle / 2.;
|
|
float opositeAngle = HALF_PI - halfAngle;
|
|
float diagonal = 1. / cos( halfAngle );
|
|
// Chamfer values
|
|
float chamferAngle = Roundness * halfAngle; // Angle taken by the chamfer
|
|
float remainingAngle = halfAngle - chamferAngle; // Angle that remains
|
|
float ratio = tan(remainingAngle) / tan(halfAngle); // This is the ratio between the length of the polygon's triangle and the distance of the chamfer center to the polygon center
|
|
// Center of the chamfer arc
|
|
float2 chamferCenter = float2(
|
|
cos(halfAngle) ,
|
|
sin(halfAngle)
|
|
)* ratio * diagonal;
|
|
// starting of the chamfer arc
|
|
float2 chamferOrigin = float2(
|
|
1.,
|
|
tan(remainingAngle)
|
|
);
|
|
// Using Al Kashi algebra, we determine:
|
|
// The distance distance of the center of the chamfer to the center of the polygon (side A)
|
|
float distA = length(chamferCenter);
|
|
// The radius of the chamfer (side B)
|
|
float distB = 1. - chamferCenter.x;
|
|
// The refence length of side C, which is the distance to the chamfer start
|
|
float distCref = length(chamferOrigin);
|
|
// This will rescale the chamfered polygon to fit the uv space
|
|
// diagonal = length(chamferCenter) + distB;
|
|
float uvScale = diagonal;
|
|
UV *= uvScale;
|
|
float2 polaruv = float2 (
|
|
atan2( UV.y, UV.x ),
|
|
length(UV)
|
|
);
|
|
polaruv.x += HALF_PI + 2*PI;
|
|
polaruv.x = fmod( polaruv.x + halfAngle, fullAngle );
|
|
polaruv.x = abs(polaruv.x - halfAngle);
|
|
UV = float2( cos(polaruv.x), sin(polaruv.x) ) * polaruv.y;
|
|
// Calculate the angle needed for the Al Kashi algebra
|
|
float angleRatio = 1. - (polaruv.x-remainingAngle) / chamferAngle;
|
|
// Calculate the distance of the polygon center to the chamfer extremity
|
|
float distC = sqrt( distA*distA + distB*distB - 2.*distA*distB*cos( PI - halfAngle * angleRatio ) );
|
|
Out = UV.x;
|
|
float chamferZone = ( halfAngle - polaruv.x ) < chamferAngle;
|
|
Out = lerp( UV.x, polaruv.y / distC, chamferZone );
|
|
// Output this to have the shape mask instead of the distance field
|
|
Out = saturate((1 - Out) / fwidth(Out));
|
|
}
|
|
```
|