62 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
		
		
			
		
	
	
			62 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
| 
								 | 
							
								// Cellular noise ("Worley noise") in 2D in GLSL.
							 | 
						||
| 
								 | 
							
								// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
							 | 
						||
| 
								 | 
							
								// This code is released under the conditions of the MIT license.
							 | 
						||
| 
								 | 
							
								// See LICENSE file for details.
							 | 
						||
| 
								 | 
							
								// https://github.com/stegu/webgl-noise
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								using static Unity.Mathematics.math;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace Unity.Mathematics
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    public static partial class noise
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        /// <summary>
							 | 
						||
| 
								 | 
							
								        /// 2D Cellular noise ("Worley noise") with standard 3x3 search window for good feature point values.
							 | 
						||
| 
								 | 
							
								        /// </summary>
							 | 
						||
| 
								 | 
							
								        /// <param name="P">A point in 2D space.</param>
							 | 
						||
| 
								 | 
							
								        /// <returns>Feature points. F1 is in the x component, F2 in the y component.</returns>
							 | 
						||
| 
								 | 
							
								        public static float2 cellular(float2 P)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            const float K = 0.142857142857f; // 1/7
							 | 
						||
| 
								 | 
							
								            const float Ko = 0.428571428571f; // 3/7
							 | 
						||
| 
								 | 
							
								            const float jitter = 1.0f; // Less gives more regular pattern
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            float2 Pi = mod289(floor(P));
							 | 
						||
| 
								 | 
							
								            float2 Pf = frac(P);
							 | 
						||
| 
								 | 
							
								            float3 oi = float3(-1.0f, 0.0f, 1.0f);
							 | 
						||
| 
								 | 
							
								            float3 of = float3(-0.5f, 0.5f, 1.5f);
							 | 
						||
| 
								 | 
							
								            float3 px = permute(Pi.x + oi);
							 | 
						||
| 
								 | 
							
								            float3 p = permute(px.x + Pi.y + oi); // p11, p12, p13
							 | 
						||
| 
								 | 
							
								            float3 ox = frac(p * K) - Ko;
							 | 
						||
| 
								 | 
							
								            float3 oy = mod7(floor(p * K)) * K - Ko;
							 | 
						||
| 
								 | 
							
								            float3 dx = Pf.x + 0.5f + jitter * ox;
							 | 
						||
| 
								 | 
							
								            float3 dy = Pf.y - of + jitter * oy;
							 | 
						||
| 
								 | 
							
								            float3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared
							 | 
						||
| 
								 | 
							
								            p = permute(px.y + Pi.y + oi); // p21, p22, p23
							 | 
						||
| 
								 | 
							
								            ox = frac(p * K) - Ko;
							 | 
						||
| 
								 | 
							
								            oy = mod7(floor(p * K)) * K - Ko;
							 | 
						||
| 
								 | 
							
								            dx = Pf.x - 0.5f + jitter * ox;
							 | 
						||
| 
								 | 
							
								            dy = Pf.y - of + jitter * oy;
							 | 
						||
| 
								 | 
							
								            float3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared
							 | 
						||
| 
								 | 
							
								            p = permute(px.z + Pi.y + oi); // p31, p32, p33
							 | 
						||
| 
								 | 
							
								            ox = frac(p * K) - Ko;
							 | 
						||
| 
								 | 
							
								            oy = mod7(floor(p * K)) * K - Ko;
							 | 
						||
| 
								 | 
							
								            dx = Pf.x - 1.5f + jitter * ox;
							 | 
						||
| 
								 | 
							
								            dy = Pf.y - of + jitter * oy;
							 | 
						||
| 
								 | 
							
								            float3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared
							 | 
						||
| 
								 | 
							
								            // Sort out the two smallest distances (F1, F2)
							 | 
						||
| 
								 | 
							
								            float3 d1a = min(d1, d2);
							 | 
						||
| 
								 | 
							
								            d2 = max(d1, d2); // Swap to keep candidates for F2
							 | 
						||
| 
								 | 
							
								            d2 = min(d2, d3); // neither F1 nor F2 are now in d3
							 | 
						||
| 
								 | 
							
								            d1 = min(d1a, d2); // F1 is now in d1
							 | 
						||
| 
								 | 
							
								            d2 = max(d1a, d2); // Swap to keep candidates for F2
							 | 
						||
| 
								 | 
							
								            d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller
							 | 
						||
| 
								 | 
							
								            d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x
							 | 
						||
| 
								 | 
							
								            d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz
							 | 
						||
| 
								 | 
							
								            d1.y = min(d1.y, d1.z); // nor in  d1.z
							 | 
						||
| 
								 | 
							
								            d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done.
							 | 
						||
| 
								 | 
							
								            return sqrt(d1.xy);
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 |