Firstborn/Library/PackageCache/com.unity.inputsystem@1.4.4/InputSystem/InputManager.cs
Schaken-Mods b486678290 Library -Artifacts
Library -Artifacts
2023-03-28 12:24:16 -05:00

3797 lines
176 KiB
C#

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Unity.Collections;
using UnityEngine.InputSystem.Composites;
using UnityEngine.InputSystem.Controls;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine.Profiling;
using UnityEngine.InputSystem.LowLevel;
using UnityEngine.InputSystem.Processors;
using UnityEngine.InputSystem.Interactions;
using UnityEngine.InputSystem.Utilities;
using UnityEngine.InputSystem.Layouts;
#if UNITY_EDITOR
using UnityEngine.InputSystem.Editor;
#endif
////TODO: make diagnostics available in dev players and give it a public API to enable them
////TODO: work towards InputManager having no direct knowledge of actions
////TODO: allow pushing events into the system any which way; decouple from the buffer in NativeInputSystem being the only source
////REVIEW: change the event properties over to using IObservable?
////REVIEW: instead of RegisterInteraction and RegisterProcessor, have a generic RegisterInterface (or something)?
////REVIEW: can we do away with the 'previous == previous frame' and simply buffer flip on every value write?
////REVIEW: should we force keeping mouse/pen/keyboard/touch around in editor even if not in list of supported devices?
////REVIEW: do we want to filter out state events that result in no state change?
#pragma warning disable CS0649
namespace UnityEngine.InputSystem
{
using DeviceChangeListener = Action<InputDevice, InputDeviceChange>;
using DeviceStateChangeListener = Action<InputDevice, InputEventPtr>;
using LayoutChangeListener = Action<string, InputControlLayoutChange>;
using EventListener = Action<InputEventPtr, InputDevice>;
using UpdateListener = Action;
/// <summary>
/// Hub of the input system.
/// </summary>
/// <remarks>
/// Not exposed. Use <see cref="InputSystem"/> as the public entry point to the system.
///
/// Manages devices, layouts, and event processing.
/// </remarks>
internal partial class InputManager
{
public ReadOnlyArray<InputDevice> devices => new ReadOnlyArray<InputDevice>(m_Devices, 0, m_DevicesCount);
public TypeTable processors => m_Processors;
public TypeTable interactions => m_Interactions;
public TypeTable composites => m_Composites;
public InputMetrics metrics
{
get
{
var result = m_Metrics;
result.currentNumDevices = m_DevicesCount;
result.currentStateSizeInBytes = (int)m_StateBuffers.totalSize;
// Count controls.
result.currentControlCount = m_DevicesCount;
for (var i = 0; i < m_DevicesCount; ++i)
result.currentControlCount += m_Devices[i].allControls.Count;
// Count layouts.
result.currentLayoutCount = m_Layouts.layoutTypes.Count;
result.currentLayoutCount += m_Layouts.layoutStrings.Count;
result.currentLayoutCount += m_Layouts.layoutBuilders.Count;
result.currentLayoutCount += m_Layouts.layoutOverrides.Count;
return result;
}
}
public InputSettings settings
{
get
{
Debug.Assert(m_Settings != null);
return m_Settings;
}
set
{
if (value == null)
throw new ArgumentNullException(nameof(value));
if (m_Settings == value)
return;
m_Settings = value;
ApplySettings();
}
}
public InputUpdateType updateMask
{
get => m_UpdateMask;
set
{
// In editor, we don't allow disabling editor updates.
#if UNITY_EDITOR
value |= InputUpdateType.Editor;
#endif
if (m_UpdateMask == value)
return;
m_UpdateMask = value;
// Recreate state buffers.
if (m_DevicesCount > 0)
ReallocateStateBuffers();
}
}
public InputUpdateType defaultUpdateType
{
get
{
if (m_CurrentUpdate != default)
return m_CurrentUpdate;
#if UNITY_EDITOR
if (!m_RunPlayerUpdatesInEditMode && (!gameIsPlaying || !gameHasFocus))
return InputUpdateType.Editor;
#endif
return m_UpdateMask.GetUpdateTypeForPlayer();
}
}
public float pollingFrequency
{
get => m_PollingFrequency;
set
{
////REVIEW: allow setting to zero to turn off polling altogether?
if (value <= 0)
throw new ArgumentException("Polling frequency must be greater than zero", "value");
m_PollingFrequency = value;
if (m_Runtime != null)
m_Runtime.pollingFrequency = value;
}
}
public event DeviceChangeListener onDeviceChange
{
add => m_DeviceChangeListeners.AddCallback(value);
remove => m_DeviceChangeListeners.RemoveCallback(value);
}
public event DeviceStateChangeListener onDeviceStateChange
{
add => m_DeviceStateChangeListeners.AddCallback(value);
remove => m_DeviceStateChangeListeners.RemoveCallback(value);
}
public event InputDeviceCommandDelegate onDeviceCommand
{
add => m_DeviceCommandCallbacks.AddCallback(value);
remove => m_DeviceCommandCallbacks.RemoveCallback(value);
}
////REVIEW: would be great to have a way to sort out precedence between two callbacks
public event InputDeviceFindControlLayoutDelegate onFindControlLayoutForDevice
{
add
{
m_DeviceFindLayoutCallbacks.AddCallback(value);
// Having a new callback on this event can change the set of devices we recognize.
// See if there's anything in the list of available devices that we can now turn
// into an InputDevice whereas we couldn't before.
//
// NOTE: A callback could also impact already existing devices and theoretically alter
// what layout we would have used for those. We do *NOT* retroactively apply
// those changes.
AddAvailableDevicesThatAreNowRecognized();
}
remove => m_DeviceFindLayoutCallbacks.RemoveCallback(value);
}
public event LayoutChangeListener onLayoutChange
{
add => m_LayoutChangeListeners.AddCallback(value);
remove => m_LayoutChangeListeners.RemoveCallback(value);
}
////TODO: add InputEventBuffer struct that uses NativeArray underneath
////TODO: make InputEventTrace use NativeArray
////TODO: introduce an alternative that consumes events in bulk
public event EventListener onEvent
{
add => m_EventListeners.AddCallback(value);
remove => m_EventListeners.RemoveCallback(value);
}
public event UpdateListener onBeforeUpdate
{
add
{
InstallBeforeUpdateHookIfNecessary();
m_BeforeUpdateListeners.AddCallback(value);
}
remove => m_BeforeUpdateListeners.RemoveCallback(value);
}
public event UpdateListener onAfterUpdate
{
add => m_AfterUpdateListeners.AddCallback(value);
remove => m_AfterUpdateListeners.RemoveCallback(value);
}
public event Action onSettingsChange
{
add => m_SettingsChangedListeners.AddCallback(value);
remove => m_SettingsChangedListeners.RemoveCallback(value);
}
public bool isProcessingEvents => m_InputEventStream.isOpen;
#if UNITY_EDITOR
private bool m_RunPlayerUpdatesInEditMode;
/// <summary>
/// If true, consider the editor to be in "perpetual play mode". Meaning, we ignore editor
/// updates and just go and continuously process Dynamic/Fixed/BeforeRender regardless of
/// whether we're in play mode or not.
///
/// In this mode, we also ignore game view focus.
/// </summary>
public bool runPlayerUpdatesInEditMode
{
get => m_RunPlayerUpdatesInEditMode;
set => m_RunPlayerUpdatesInEditMode = value;
}
#endif
private bool gameIsPlaying =>
#if UNITY_EDITOR
(m_Runtime.isInPlayMode && !m_Runtime.isPaused) || m_RunPlayerUpdatesInEditMode;
#else
true;
#endif
private bool gameHasFocus =>
#if UNITY_EDITOR
m_RunPlayerUpdatesInEditMode || m_HasFocus || gameShouldGetInputRegardlessOfFocus;
#else
m_HasFocus || gameShouldGetInputRegardlessOfFocus;
#endif
private bool gameShouldGetInputRegardlessOfFocus =>
m_Settings.backgroundBehavior == InputSettings.BackgroundBehavior.IgnoreFocus
#if UNITY_EDITOR
&& m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView
#endif
;
////TODO: when registering a layout that exists as a layout of a different type (type vs string vs constructor),
//// remove the existing registration
// Add a layout constructed from a type.
// If a layout with the same name already exists, the new layout
// takes its place.
public void RegisterControlLayout(string name, Type type)
{
if (string.IsNullOrEmpty(name))
throw new ArgumentNullException(nameof(name));
if (type == null)
throw new ArgumentNullException(nameof(type));
// Note that since InputDevice derives from InputControl, isDeviceLayout implies
// isControlLayout to be true as well.
var isDeviceLayout = typeof(InputDevice).IsAssignableFrom(type);
var isControlLayout = typeof(InputControl).IsAssignableFrom(type);
if (!isDeviceLayout && !isControlLayout)
throw new ArgumentException($"Types used as layouts have to be InputControls or InputDevices; '{type.Name}' is a '{type.BaseType.Name}'",
nameof(type));
var internedName = new InternedString(name);
var isReplacement = m_Layouts.HasLayout(internedName);
// All we do is enter the type into a map. We don't construct an InputControlLayout
// from it until we actually need it in an InputDeviceBuilder to create a device.
// This not only avoids us creating a bunch of objects on the managed heap but
// also avoids us laboriously constructing a XRController layout, for example,
// in a game that never uses XR.
m_Layouts.layoutTypes[internedName] = type;
////TODO: make this independent of initialization order
////TODO: re-scan base type information after domain reloads
// Walk class hierarchy all the way up to InputControl to see
// if there's another type that's been registered as a layout.
// If so, make it a base layout for this one.
string baseLayout = null;
for (var baseType = type.BaseType; baseLayout == null && baseType != typeof(InputControl);
baseType = baseType.BaseType)
{
foreach (var entry in m_Layouts.layoutTypes)
if (entry.Value == baseType)
{
baseLayout = entry.Key;
break;
}
}
PerformLayoutPostRegistration(internedName, new InlinedArray<InternedString>(new InternedString(baseLayout)),
isReplacement, isKnownToBeDeviceLayout: isDeviceLayout);
}
public void RegisterControlLayout(string json, string name = null, bool isOverride = false)
{
if (string.IsNullOrEmpty(json))
throw new ArgumentNullException(nameof(json));
////REVIEW: as long as no one has instantiated the layout, the base layout information is kinda pointless
// Parse out name, device description, and base layout.
InputControlLayout.ParseHeaderFieldsFromJson(json, out var nameFromJson, out var baseLayouts,
out var deviceMatcher);
// Decide whether to take name from JSON or from code.
var internedLayoutName = new InternedString(name);
if (internedLayoutName.IsEmpty())
{
internedLayoutName = nameFromJson;
// Make sure we have a name.
if (internedLayoutName.IsEmpty())
throw new ArgumentException("Layout name has not been given and is not set in JSON layout",
nameof(name));
}
// If it's an override, it must have a layout the overrides apply to.
if (isOverride && baseLayouts.length == 0)
{
throw new ArgumentException(
$"Layout override '{internedLayoutName}' must have 'extend' property mentioning layout to which to apply the overrides",
nameof(json));
}
// Add it to our records.
var isReplacement = m_Layouts.HasLayout(internedLayoutName);
if (isReplacement && isOverride)
{ // Do not allow a layout override to replace a "base layout" by name, but allow layout overrides
// to replace an existing layout override.
// This is required to guarantee that its a hierarchy (directed graph) rather
// than a cyclic graph.
var isReplacingOverride = m_Layouts.layoutOverrideNames.Contains(internedLayoutName);
if (!isReplacingOverride)
{
throw new ArgumentException($"Failed to register layout override '{internedLayoutName}'" +
$"since a layout named '{internedLayoutName}' already exist. Layout overrides must " +
$"have unique names with respect to existing layouts.");
}
}
m_Layouts.layoutStrings[internedLayoutName] = json;
if (isOverride)
{
m_Layouts.layoutOverrideNames.Add(internedLayoutName);
for (var i = 0; i < baseLayouts.length; ++i)
{
var baseLayoutName = baseLayouts[i];
m_Layouts.layoutOverrides.TryGetValue(baseLayoutName, out var overrideList);
if (!isReplacement)
ArrayHelpers.Append(ref overrideList, internedLayoutName);
m_Layouts.layoutOverrides[baseLayoutName] = overrideList;
}
}
PerformLayoutPostRegistration(internedLayoutName, baseLayouts,
isReplacement: isReplacement, isOverride: isOverride);
// If the layout contained a device matcher, register it.
if (!deviceMatcher.empty)
RegisterControlLayoutMatcher(internedLayoutName, deviceMatcher);
}
public void RegisterControlLayoutBuilder(Func<InputControlLayout> method, string name,
string baseLayout = null)
{
if (method == null)
throw new ArgumentNullException(nameof(method));
if (string.IsNullOrEmpty(name))
throw new ArgumentNullException(nameof(name));
var internedLayoutName = new InternedString(name);
var internedBaseLayoutName = new InternedString(baseLayout);
var isReplacement = m_Layouts.HasLayout(internedLayoutName);
m_Layouts.layoutBuilders[internedLayoutName] = method;
PerformLayoutPostRegistration(internedLayoutName, new InlinedArray<InternedString>(internedBaseLayoutName),
isReplacement);
}
private void PerformLayoutPostRegistration(InternedString layoutName, InlinedArray<InternedString> baseLayouts,
bool isReplacement, bool isKnownToBeDeviceLayout = false, bool isOverride = false)
{
++m_LayoutRegistrationVersion;
// Force-clear layout cache. Don't clear reference count so that
// the cache gets cleared out properly when released in case someone
// is using it ATM.
InputControlLayout.s_CacheInstance.Clear();
// For layouts that aren't overrides, add the name of the base
// layout to the lookup table.
if (!isOverride && baseLayouts.length > 0)
{
if (baseLayouts.length > 1)
throw new NotSupportedException(
$"Layout '{layoutName}' has multiple base layouts; this is only supported on layout overrides");
var baseLayoutName = baseLayouts[0];
if (!baseLayoutName.IsEmpty())
m_Layouts.baseLayoutTable[layoutName] = baseLayoutName;
}
// Nuke any precompiled layouts that are invalidated by the layout registration.
m_Layouts.precompiledLayouts.Remove(layoutName);
if (m_Layouts.precompiledLayouts.Count > 0)
{
foreach (var layout in m_Layouts.precompiledLayouts.Keys.ToArray())
{
var metadata = m_Layouts.precompiledLayouts[layout].metadata;
// If it's an override, we remove any precompiled layouts to which overrides are applied.
if (isOverride)
{
for (var i = 0; i < baseLayouts.length; ++i)
if (layout == baseLayouts[i] ||
StringHelpers.CharacterSeparatedListsHaveAtLeastOneCommonElement(metadata,
baseLayouts[i], ';'))
m_Layouts.precompiledLayouts.Remove(layout);
}
else
{
// Otherwise, we remove any precompile layouts that use the layout we just changed.
if (StringHelpers.CharacterSeparatedListsHaveAtLeastOneCommonElement(metadata,
layoutName, ';'))
m_Layouts.precompiledLayouts.Remove(layout);
}
}
}
// Recreate any devices using the layout. If it's an override, recreate devices using any of the base layouts.
if (isOverride)
{
for (var i = 0; i < baseLayouts.length; ++i)
RecreateDevicesUsingLayout(baseLayouts[i], isKnownToBeDeviceLayout: isKnownToBeDeviceLayout);
}
else
{
RecreateDevicesUsingLayout(layoutName, isKnownToBeDeviceLayout: isKnownToBeDeviceLayout);
}
// In the editor, layouts may become available successively after a domain reload so
// we may end up retaining device information all the way until we run the first full
// player update. For every layout we register, we check here whether we have a saved
// device state using a layout with the same name but not having a device description
// (the latter is important as in that case, we should go through the normal matching
// process and not just rely on the name of the layout). If so, we try here to recreate
// the device with the just registered layout.
#if UNITY_EDITOR
for (var i = 0; i < m_SavedDeviceStates.LengthSafe(); ++i)
{
ref var deviceState = ref m_SavedDeviceStates[i];
if (layoutName != deviceState.layout || !deviceState.description.empty)
continue;
if (RestoreDeviceFromSavedState(ref deviceState, layoutName))
{
ArrayHelpers.EraseAt(ref m_SavedDeviceStates, i);
--i;
}
}
#endif
// Let listeners know.
var change = isReplacement ? InputControlLayoutChange.Replaced : InputControlLayoutChange.Added;
DelegateHelpers.InvokeCallbacksSafe(ref m_LayoutChangeListeners, layoutName.ToString(), change, "InputSystem.onLayoutChange");
}
public void RegisterPrecompiledLayout<TDevice>(string metadata)
where TDevice : InputDevice, new()
{
if (metadata == null)
throw new ArgumentNullException(nameof(metadata));
var deviceType = typeof(TDevice).BaseType;
var layoutName = FindOrRegisterDeviceLayoutForType(deviceType);
m_Layouts.precompiledLayouts[layoutName] = new InputControlLayout.Collection.PrecompiledLayout
{
factoryMethod = () => new TDevice(),
metadata = metadata
};
}
private void RecreateDevicesUsingLayout(InternedString layout, bool isKnownToBeDeviceLayout = false)
{
if (m_DevicesCount == 0)
return;
List<InputDevice> devicesUsingLayout = null;
// Find all devices using the layout.
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
bool usesLayout;
if (isKnownToBeDeviceLayout)
usesLayout = IsControlUsingLayout(device, layout);
else
usesLayout = IsControlOrChildUsingLayoutRecursive(device, layout);
if (usesLayout)
{
if (devicesUsingLayout == null)
devicesUsingLayout = new List<InputDevice>();
devicesUsingLayout.Add(device);
}
}
// If there's none, we're good.
if (devicesUsingLayout == null)
return;
// Remove and re-add the matching devices.
using (InputDeviceBuilder.Ref())
{
for (var i = 0; i < devicesUsingLayout.Count; ++i)
{
var device = devicesUsingLayout[i];
RecreateDevice(device, device.m_Layout);
}
}
}
private bool IsControlOrChildUsingLayoutRecursive(InputControl control, InternedString layout)
{
// Check control itself.
if (IsControlUsingLayout(control, layout))
return true;
// Check children.
var children = control.children;
for (var i = 0; i < children.Count; ++i)
if (IsControlOrChildUsingLayoutRecursive(children[i], layout))
return true;
return false;
}
private bool IsControlUsingLayout(InputControl control, InternedString layout)
{
// Check direct match.
if (control.layout == layout)
return true;
// Check base layout chain.
var baseLayout = control.m_Layout;
while (m_Layouts.baseLayoutTable.TryGetValue(baseLayout, out baseLayout))
if (baseLayout == layout)
return true;
return false;
}
public void RegisterControlLayoutMatcher(string layoutName, InputDeviceMatcher matcher)
{
if (string.IsNullOrEmpty(layoutName))
throw new ArgumentNullException(nameof(layoutName));
if (matcher.empty)
throw new ArgumentException("Matcher cannot be empty", nameof(matcher));
// Add to table.
var internedLayoutName = new InternedString(layoutName);
m_Layouts.AddMatcher(internedLayoutName, matcher);
// Recreate any device that we match better than its current layout.
RecreateDevicesUsingLayoutWithInferiorMatch(matcher);
// See if we can make sense of any device we couldn't make sense of before.
AddAvailableDevicesMatchingDescription(matcher, internedLayoutName);
}
public void RegisterControlLayoutMatcher(Type type, InputDeviceMatcher matcher)
{
if (type == null)
throw new ArgumentNullException(nameof(type));
if (matcher.empty)
throw new ArgumentException("Matcher cannot be empty", nameof(matcher));
var layoutName = m_Layouts.TryFindLayoutForType(type);
if (layoutName.IsEmpty())
throw new ArgumentException(
$"Type '{type.Name}' has not been registered as a control layout", nameof(type));
RegisterControlLayoutMatcher(layoutName, matcher);
}
private void RecreateDevicesUsingLayoutWithInferiorMatch(InputDeviceMatcher deviceMatcher)
{
if (m_DevicesCount == 0)
return;
using (InputDeviceBuilder.Ref())
{
var deviceCount = m_DevicesCount;
for (var i = 0; i < deviceCount; ++i)
{
var device = m_Devices[i];
var deviceDescription = device.description;
if (deviceDescription.empty || !(deviceMatcher.MatchPercentage(deviceDescription) > 0))
continue;
var layoutName = TryFindMatchingControlLayout(ref deviceDescription, device.deviceId);
if (layoutName != device.m_Layout)
{
device.m_Description = deviceDescription;
RecreateDevice(device, layoutName);
// We're removing devices in the middle of the array and appending
// them at the end. Adjust our index and device count to make sure
// we're not iterating all the way into already processed devices.
--i;
--deviceCount;
}
}
}
}
private void RecreateDevice(InputDevice oldDevice, InternedString newLayout)
{
// Remove.
RemoveDevice(oldDevice, keepOnListOfAvailableDevices: true);
// Re-setup device.
var newDevice = InputDevice.Build<InputDevice>(newLayout, oldDevice.m_Variants,
deviceDescription: oldDevice.m_Description);
// Preserve device properties that should not be changed by the re-creation
// of a device.
newDevice.m_DeviceId = oldDevice.m_DeviceId;
newDevice.m_Description = oldDevice.m_Description;
if (oldDevice.native)
newDevice.m_DeviceFlags |= InputDevice.DeviceFlags.Native;
if (oldDevice.remote)
newDevice.m_DeviceFlags |= InputDevice.DeviceFlags.Remote;
if (!oldDevice.enabled)
{
newDevice.m_DeviceFlags |= InputDevice.DeviceFlags.DisabledStateHasBeenQueriedFromRuntime;
newDevice.m_DeviceFlags |= InputDevice.DeviceFlags.DisabledInFrontend;
}
// Re-add.
AddDevice(newDevice);
}
private void AddAvailableDevicesMatchingDescription(InputDeviceMatcher matcher, InternedString layout)
{
#if UNITY_EDITOR
// If we still have some devices saved from the last domain reload, see
// if they are matched by the given matcher. If so, turn them into devices.
for (var i = 0; i < m_SavedDeviceStates.LengthSafe(); ++i)
{
ref var deviceState = ref m_SavedDeviceStates[i];
if (matcher.MatchPercentage(deviceState.description) > 0)
{
RestoreDeviceFromSavedState(ref deviceState, layout);
ArrayHelpers.EraseAt(ref m_SavedDeviceStates, i);
--i;
}
}
#endif
// See if the new description to layout mapping allows us to make
// sense of a device we couldn't make sense of so far.
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
// Ignore if it's a device that has been explicitly removed.
if (m_AvailableDevices[i].isRemoved)
continue;
var deviceId = m_AvailableDevices[i].deviceId;
if (TryGetDeviceById(deviceId) != null)
continue;
if (matcher.MatchPercentage(m_AvailableDevices[i].description) > 0f)
{
// Try to create InputDevice instance.
try
{
AddDevice(layout, deviceId, deviceDescription: m_AvailableDevices[i].description,
deviceFlags: m_AvailableDevices[i].isNative ? InputDevice.DeviceFlags.Native : 0);
}
catch (Exception exception)
{
Debug.LogError(
$"Layout '{layout}' matches existing device '{m_AvailableDevices[i].description}' but failed to instantiate: {exception}");
Debug.LogException(exception);
continue;
}
// Re-enable device.
var command = EnableDeviceCommand.Create();
m_Runtime.DeviceCommand(deviceId, ref command);
}
}
}
public void RemoveControlLayout(string name)
{
if (string.IsNullOrEmpty(name))
throw new ArgumentNullException(nameof(name));
var internedName = new InternedString(name);
// Remove all devices using the layout.
for (var i = 0; i < m_DevicesCount;)
{
var device = m_Devices[i];
if (IsControlOrChildUsingLayoutRecursive(device, internedName))
{
RemoveDevice(device, keepOnListOfAvailableDevices: true);
}
else
{
++i;
}
}
// Remove layout record.
m_Layouts.layoutTypes.Remove(internedName);
m_Layouts.layoutStrings.Remove(internedName);
m_Layouts.layoutBuilders.Remove(internedName);
m_Layouts.baseLayoutTable.Remove(internedName);
++m_LayoutRegistrationVersion;
////TODO: check all layout inheritance chain for whether they are based on the layout and if so
//// remove those layouts, too
// Let listeners know.
DelegateHelpers.InvokeCallbacksSafe(ref m_LayoutChangeListeners, name, InputControlLayoutChange.Removed, "InputSystem.onLayoutChange");
}
public InputControlLayout TryLoadControlLayout(Type type)
{
if (type == null)
throw new ArgumentNullException(nameof(type));
if (!typeof(InputControl).IsAssignableFrom(type))
throw new ArgumentException($"Type '{type.Name}' is not an InputControl", nameof(type));
// Find the layout name that the given type was registered with.
var layoutName = m_Layouts.TryFindLayoutForType(type);
if (layoutName.IsEmpty())
throw new ArgumentException(
$"Type '{type.Name}' has not been registered as a control layout", nameof(type));
return m_Layouts.TryLoadLayout(layoutName);
}
public InputControlLayout TryLoadControlLayout(InternedString name)
{
return m_Layouts.TryLoadLayout(name);
}
////FIXME: allowing the description to be modified as part of this is surprising; find a better way
public InternedString TryFindMatchingControlLayout(ref InputDeviceDescription deviceDescription, int deviceId = InputDevice.InvalidDeviceId)
{
Profiler.BeginSample("InputSystem.TryFindMatchingControlLayout");
////TODO: this will want to take overrides into account
// See if we can match by description.
var layoutName = m_Layouts.TryFindMatchingLayout(deviceDescription);
if (layoutName.IsEmpty())
{
// No, so try to match by device class. If we have a "Gamepad" layout,
// for example, a device that classifies itself as a "Gamepad" will match
// that layout.
//
// NOTE: Have to make sure here that we get a device layout and not a
// control layout.
if (!string.IsNullOrEmpty(deviceDescription.deviceClass))
{
var deviceClassLowerCase = new InternedString(deviceDescription.deviceClass);
var type = m_Layouts.GetControlTypeForLayout(deviceClassLowerCase);
if (type != null && typeof(InputDevice).IsAssignableFrom(type))
layoutName = new InternedString(deviceDescription.deviceClass);
}
}
////REVIEW: listeners registering new layouts from in here may potentially lead to the creation of devices; should we disallow that?
////REVIEW: if a callback picks a layout, should we re-run through the list of callbacks? or should we just remove haveOverridenLayoutName?
// Give listeners a shot to select/create a layout.
if (m_DeviceFindLayoutCallbacks.length > 0)
{
// First time we get here, put our delegate for executing device commands
// in place. We wrap the call to IInputRuntime.DeviceCommand so that we don't
// need to expose the runtime to the onFindLayoutForDevice callbacks.
if (m_DeviceFindExecuteCommandDelegate == null)
m_DeviceFindExecuteCommandDelegate =
(ref InputDeviceCommand commandRef) =>
{
if (m_DeviceFindExecuteCommandDeviceId == InputDevice.InvalidDeviceId)
return InputDeviceCommand.GenericFailure;
return m_Runtime.DeviceCommand(m_DeviceFindExecuteCommandDeviceId, ref commandRef);
};
m_DeviceFindExecuteCommandDeviceId = deviceId;
var haveOverriddenLayoutName = false;
m_DeviceFindLayoutCallbacks.LockForChanges();
for (var i = 0; i < m_DeviceFindLayoutCallbacks.length; ++i)
{
try
{
var newLayout = m_DeviceFindLayoutCallbacks[i](ref deviceDescription, layoutName, m_DeviceFindExecuteCommandDelegate);
if (!string.IsNullOrEmpty(newLayout) && !haveOverriddenLayoutName)
{
layoutName = new InternedString(newLayout);
haveOverriddenLayoutName = true;
}
}
catch (Exception exception)
{
Debug.LogError($"{exception.GetType().Name} while executing 'InputSystem.onFindLayoutForDevice' callbacks");
Debug.LogException(exception);
}
}
m_DeviceFindLayoutCallbacks.UnlockForChanges();
}
Profiler.EndSample();
return layoutName;
}
private InternedString FindOrRegisterDeviceLayoutForType(Type type)
{
var layoutName = m_Layouts.TryFindLayoutForType(type);
if (layoutName.IsEmpty())
{
// Automatically register the given type as a layout.
if (layoutName.IsEmpty())
{
layoutName = new InternedString(type.Name);
RegisterControlLayout(type.Name, type);
}
}
return layoutName;
}
/// <summary>
/// Return true if the given device layout is supported by the game according to <see cref="InputSettings.supportedDevices"/>.
/// </summary>
/// <param name="layoutName">Name of the device layout.</param>
/// <returns>True if a device with the given layout should be created for the game, false otherwise.</returns>
private bool IsDeviceLayoutMarkedAsSupportedInSettings(InternedString layoutName)
{
// In the editor, "Supported Devices" can be overridden by a user setting. This causes
// all available devices to be added regardless of what "Supported Devices" says. This
// is useful to ensure that things like keyboard, mouse, and pen keep working in the editor
// even if not supported as devices in the game.
#if UNITY_EDITOR
if (InputEditorUserSettings.addDevicesNotSupportedByProject)
return true;
#endif
var supportedDevices = m_Settings.supportedDevices;
if (supportedDevices.Count == 0)
{
// If supportedDevices is empty, all device layouts are considered supported.
return true;
}
for (var n = 0; n < supportedDevices.Count; ++n)
{
var supportedLayout = new InternedString(supportedDevices[n]);
if (layoutName == supportedLayout || m_Layouts.IsBasedOn(supportedLayout, layoutName))
return true;
}
return false;
}
public IEnumerable<string> ListControlLayouts(string basedOn = null)
{
////FIXME: this may add a name twice
if (!string.IsNullOrEmpty(basedOn))
{
var internedBasedOn = new InternedString(basedOn);
foreach (var entry in m_Layouts.layoutTypes)
if (m_Layouts.IsBasedOn(internedBasedOn, entry.Key))
yield return entry.Key;
foreach (var entry in m_Layouts.layoutStrings)
if (m_Layouts.IsBasedOn(internedBasedOn, entry.Key))
yield return entry.Key;
foreach (var entry in m_Layouts.layoutBuilders)
if (m_Layouts.IsBasedOn(internedBasedOn, entry.Key))
yield return entry.Key;
}
else
{
foreach (var entry in m_Layouts.layoutTypes)
yield return entry.Key;
foreach (var entry in m_Layouts.layoutStrings)
yield return entry.Key;
foreach (var entry in m_Layouts.layoutBuilders)
yield return entry.Key;
}
}
// Adds all controls that match the given path spec to the given list.
// Returns number of controls added to the list.
// NOTE: Does not create garbage.
/// <summary>
/// Adds to the given list all controls that match the given <see cref="InputControlPath">path spec</see>
/// and are assignable to the given type.
/// </summary>
/// <param name="path"></param>
/// <param name="controls"></param>
/// <typeparam name="TControl"></typeparam>
/// <returns></returns>
public int GetControls<TControl>(string path, ref InputControlList<TControl> controls)
where TControl : InputControl
{
if (string.IsNullOrEmpty(path))
return 0;
if (m_DevicesCount == 0)
return 0;
var deviceCount = m_DevicesCount;
var numMatches = 0;
for (var i = 0; i < deviceCount; ++i)
{
var device = m_Devices[i];
numMatches += InputControlPath.TryFindControls(device, path, 0, ref controls);
}
return numMatches;
}
public void SetDeviceUsage(InputDevice device, InternedString usage)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (device.usages.Count == 1 && device.usages[0] == usage)
return;
if (device.usages.Count == 0 && usage.IsEmpty())
return;
device.ClearDeviceUsages();
if (!usage.IsEmpty())
device.AddDeviceUsage(usage);
NotifyUsageChanged(device);
}
public void AddDeviceUsage(InputDevice device, InternedString usage)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (usage.IsEmpty())
throw new ArgumentException("Usage string cannot be empty", nameof(usage));
if (device.usages.Contains(usage))
return;
device.AddDeviceUsage(usage);
NotifyUsageChanged(device);
}
public void RemoveDeviceUsage(InputDevice device, InternedString usage)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (usage.IsEmpty())
throw new ArgumentException("Usage string cannot be empty", nameof(usage));
if (!device.usages.Contains(usage))
return;
device.RemoveDeviceUsage(usage);
NotifyUsageChanged(device);
}
private void NotifyUsageChanged(InputDevice device)
{
InputActionState.OnDeviceChange(device, InputDeviceChange.UsageChanged);
// Notify listeners.
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, InputDeviceChange.UsageChanged, "InputSystem.onDeviceChange");
////REVIEW: This was for the XRController leftHand and rightHand getters but these do lookups dynamically now; remove?
// Usage may affect current device so update.
device.MakeCurrent();
}
////TODO: make sure that no device or control with a '/' in the name can creep into the system
public InputDevice AddDevice(Type type, string name = null)
{
if (type == null)
throw new ArgumentNullException(nameof(type));
// Find the layout name that the given type was registered with.
var layoutName = FindOrRegisterDeviceLayoutForType(type);
Debug.Assert(!layoutName.IsEmpty(), name);
// Note that since we go through the normal by-name lookup here, this will
// still work if the layout from the type was override with a string layout.
return AddDevice(layoutName, name);
}
// Creates a device from the given layout and adds it to the system.
// NOTE: Creates garbage.
public InputDevice AddDevice(string layout, string name = null, InternedString variants = new InternedString())
{
if (string.IsNullOrEmpty(layout))
throw new ArgumentNullException(nameof(layout));
var device = InputDevice.Build<InputDevice>(layout, variants);
if (!string.IsNullOrEmpty(name))
device.m_Name = new InternedString(name);
AddDevice(device);
return device;
}
// Add device with a forced ID. Used when creating devices reported to us by native.
private InputDevice AddDevice(InternedString layout, int deviceId,
string deviceName = null,
InputDeviceDescription deviceDescription = new InputDeviceDescription(),
InputDevice.DeviceFlags deviceFlags = 0,
InternedString variants = default)
{
var device = InputDevice.Build<InputDevice>(new InternedString(layout),
deviceDescription: deviceDescription,
layoutVariants: variants);
device.m_DeviceId = deviceId;
device.m_Description = deviceDescription;
device.m_DeviceFlags |= deviceFlags;
if (!string.IsNullOrEmpty(deviceName))
device.m_Name = new InternedString(deviceName);
// Default display name to product name.
if (!string.IsNullOrEmpty(deviceDescription.product))
device.m_DisplayName = deviceDescription.product;
AddDevice(device);
return device;
}
public void AddDevice(InputDevice device)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (string.IsNullOrEmpty(device.layout))
throw new InvalidOperationException("Device has no associated layout");
// Ignore if the same device gets added multiple times.
if (ArrayHelpers.Contains(m_Devices, device))
return;
MakeDeviceNameUnique(device);
AssignUniqueDeviceId(device);
// Add to list.
device.m_DeviceIndex = ArrayHelpers.AppendWithCapacity(ref m_Devices, ref m_DevicesCount, device);
////REVIEW: Not sure a full-blown dictionary is the right way here. Alternatives are to keep
//// a sparse array that directly indexes using the linearly increasing IDs (though that
//// may get large over time). Or to just do a linear search through m_Devices (but
//// that may end up tapping a bunch of memory locations in the heap to find the right
//// device; could be improved by sorting m_Devices by ID and picking a good starting
//// point based on the ID we have instead of searching from [0] always).
m_DevicesById[device.deviceId] = device;
// Let InputStateBuffers know this device doesn't have any associated state yet.
device.m_StateBlock.byteOffset = InputStateBlock.InvalidOffset;
// Update state buffers.
ReallocateStateBuffers();
InitializeDeviceState(device);
// Update metrics.
m_Metrics.maxNumDevices = Mathf.Max(m_DevicesCount, m_Metrics.maxNumDevices);
m_Metrics.maxStateSizeInBytes = Mathf.Max((int)m_StateBuffers.totalSize, m_Metrics.maxStateSizeInBytes);
// Make sure that if the device ID is listed in m_AvailableDevices, the device
// is no longer marked as removed.
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
if (m_AvailableDevices[i].deviceId == device.deviceId)
m_AvailableDevices[i].isRemoved = false;
}
// If we're running in the background, find out whether the device can run in
// the background. If not, disable it.
var isPlaying = true;
#if UNITY_EDITOR
isPlaying = m_Runtime.isInPlayMode;
#endif
if (isPlaying && !gameHasFocus
&& m_Settings.backgroundBehavior != InputSettings.BackgroundBehavior.IgnoreFocus
&& m_Runtime.runInBackground
&& device.QueryEnabledStateFromRuntime()
&& !ShouldRunDeviceInBackground(device))
{
EnableOrDisableDevice(device, false, DeviceDisableScope.TemporaryWhilePlayerIsInBackground);
}
////REVIEW: we may want to suppress this during the initial device discovery phase
// Let actions re-resolve their paths.
InputActionState.OnDeviceChange(device, InputDeviceChange.Added);
// If the device wants automatic callbacks before input updates,
// put it on the list.
if (device is IInputUpdateCallbackReceiver beforeUpdateCallbackReceiver)
onBeforeUpdate += beforeUpdateCallbackReceiver.OnUpdate;
// If the device has state callbacks, make a note of it.
if (device is IInputStateCallbackReceiver)
{
InstallBeforeUpdateHookIfNecessary();
device.m_DeviceFlags |= InputDevice.DeviceFlags.HasStateCallbacks;
m_HaveDevicesWithStateCallbackReceivers = true;
}
// If the device has event merger, make a note of it.
if (device is IEventMerger)
device.hasEventMerger = true;
// If the device has event preprocessor, make a note of it.
if (device is IEventPreProcessor)
device.hasEventPreProcessor = true;
// If the device wants before-render updates, enable them if they
// aren't already.
if (device.updateBeforeRender)
updateMask |= InputUpdateType.BeforeRender;
// Notify device.
device.NotifyAdded();
////REVIEW: is this really a good thing to do? just plugging in a device shouldn't make
//// it current, no?
// Make the device current.
// BEWARE: if this will not happen for whatever reason, you will break Android sensors,
// as they rely on .current for enabling native backend, see https://fogbugz.unity3d.com/f/cases/1371204/
device.MakeCurrent();
// Notify listeners.
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, InputDeviceChange.Added, "InputSystem.onDeviceChange");
// Request device to send us an initial state update.
if (device.enabled)
device.RequestSync();
}
////TODO: this path should really put the device on the list of available devices
////TODO: this path should discover disconnected devices
public InputDevice AddDevice(InputDeviceDescription description)
{
////REVIEW: is throwing here really such a useful thing?
return AddDevice(description, throwIfNoLayoutFound: true);
}
public InputDevice AddDevice(InputDeviceDescription description, bool throwIfNoLayoutFound,
string deviceName = null, int deviceId = InputDevice.InvalidDeviceId, InputDevice.DeviceFlags deviceFlags = 0)
{
Profiler.BeginSample("InputSystem.AddDevice");
// Look for matching layout.
var layout = TryFindMatchingControlLayout(ref description, deviceId);
// If no layout was found, bail out.
if (layout.IsEmpty())
{
if (throwIfNoLayoutFound)
throw new ArgumentException($"Cannot find layout matching device description '{description}'", nameof(description));
// If it's a device coming from the runtime, disable it.
if (deviceId != InputDevice.InvalidDeviceId)
{
var command = DisableDeviceCommand.Create();
m_Runtime.DeviceCommand(deviceId, ref command);
}
Profiler.EndSample();
return null;
}
var device = AddDevice(layout, deviceId, deviceName, description, deviceFlags);
device.m_Description = description;
Profiler.EndSample();
return device;
}
public InputDevice AddDevice(InputDeviceDescription description, InternedString layout, string deviceName = null,
int deviceId = InputDevice.InvalidDeviceId, InputDevice.DeviceFlags deviceFlags = 0)
{
try
{
Profiler.BeginSample("InputSystem.AddDevice");
var device = AddDevice(layout, deviceId, deviceName, description, deviceFlags);
device.m_Description = description;
return device;
}
finally
{
Profiler.EndSample();
}
}
public void RemoveDevice(InputDevice device, bool keepOnListOfAvailableDevices = false)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
// If device has not been added, ignore.
if (device.m_DeviceIndex == InputDevice.kInvalidDeviceIndex)
return;
// Remove state monitors while device index is still valid.
RemoveStateChangeMonitors(device);
// Remove from device array.
var deviceIndex = device.m_DeviceIndex;
var deviceId = device.deviceId;
if (deviceIndex < m_StateChangeMonitors.LengthSafe())
{
// m_StateChangeMonitors mirrors layout of m_Devices *but* may be shorter.
var count = m_StateChangeMonitors.Length;
ArrayHelpers.EraseAtWithCapacity(m_StateChangeMonitors, ref count, deviceIndex);
}
ArrayHelpers.EraseAtWithCapacity(m_Devices, ref m_DevicesCount, deviceIndex);
m_DevicesById.Remove(deviceId);
if (m_Devices != null)
{
// Remove from state buffers.
ReallocateStateBuffers();
}
else
{
// No more devices. Kill state buffers.
m_StateBuffers.FreeAll();
}
////TODO: When we remove a native device like this, make sure we tell the backend to disable it (and re-enable it when re-add it)
// Update device indices. Do this after reallocating state buffers as that call requires
// the old indices to still be in place.
for (var i = deviceIndex; i < m_DevicesCount; ++i)
--m_Devices[i].m_DeviceIndex; // Indices have shifted down by one.
device.m_DeviceIndex = InputDevice.kInvalidDeviceIndex;
// Update list of available devices.
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
if (m_AvailableDevices[i].deviceId == deviceId)
{
if (keepOnListOfAvailableDevices)
m_AvailableDevices[i].isRemoved = true;
else
ArrayHelpers.EraseAtWithCapacity(m_AvailableDevices, ref m_AvailableDeviceCount, i);
break;
}
}
// Unbake offset into global state buffers.
device.BakeOffsetIntoStateBlockRecursive((uint)-device.m_StateBlock.byteOffset);
// Force enabled actions to remove controls from the device.
// We've already set the device index to be invalid so we any attempts
// by actions to uninstall state monitors will get ignored.
InputActionState.OnDeviceChange(device, InputDeviceChange.Removed);
// Kill before update callback, if applicable.
if (device is IInputUpdateCallbackReceiver beforeUpdateCallbackReceiver)
onBeforeUpdate -= beforeUpdateCallbackReceiver.OnUpdate;
// Disable before-render updates if this was the last device
// that requires them.
if (device.updateBeforeRender)
{
var haveDeviceRequiringBeforeRender = false;
for (var i = 0; i < m_DevicesCount; ++i)
if (m_Devices[i].updateBeforeRender)
{
haveDeviceRequiringBeforeRender = true;
break;
}
if (!haveDeviceRequiringBeforeRender)
updateMask &= ~InputUpdateType.BeforeRender;
}
// Let device know.
device.NotifyRemoved();
// Let listeners know.
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, InputDeviceChange.Removed, "InputSystem.onDeviceChange");
// Try setting next device of same type as current
InputSystem.GetDevice(device.GetType())?.MakeCurrent();
}
public void FlushDisconnectedDevices()
{
m_DisconnectedDevices.Clear(m_DisconnectedDevicesCount);
m_DisconnectedDevicesCount = 0;
}
public unsafe void ResetDevice(InputDevice device, bool alsoResetDontResetControls = false, bool? issueResetCommand = null)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (!device.added)
throw new InvalidOperationException($"Device '{device}' has not been added to the system");
var isHardReset = alsoResetDontResetControls || !device.hasDontResetControls;
// Trigger reset notification.
var change = isHardReset ? InputDeviceChange.HardReset : InputDeviceChange.SoftReset;
InputActionState.OnDeviceChange(device, change);
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, change, "onDeviceChange");
// If the device implements its own reset, let it handle it.
if (!alsoResetDontResetControls && device is ICustomDeviceReset customReset)
{
customReset.Reset();
}
else
{
var defaultStatePtr = device.defaultStatePtr;
var deviceStateBlockSize = device.stateBlock.alignedSizeInBytes;
// Allocate temp memory to hold one state event.
////REVIEW: the need for an event here is sufficiently obscure to warrant scrutiny; likely, there's a better way
//// to tell synthetic input (or input sources in general) apart
// NOTE: We wrap the reset in an artificial state event so that it appears to the rest of the system
// like any other input. If we don't do that but rather just call UpdateState() with a null event
// pointer, the change will be considered an internal state change and will get ignored by some
// pieces of code (such as EnhancedTouch which filters out internal state changes of Touchscreen
// by ignoring any change that is not coming from an input event).
using (var tempBuffer =
new NativeArray<byte>(InputEvent.kBaseEventSize + sizeof(int) + (int)deviceStateBlockSize, Allocator.Temp))
{
var stateEventPtr = (StateEvent*)tempBuffer.GetUnsafePtr();
var statePtr = stateEventPtr->state;
var currentTime = m_Runtime.currentTime;
// Set up the state event.
ref var stateBlock = ref device.m_StateBlock;
stateEventPtr->baseEvent.type = StateEvent.Type;
stateEventPtr->baseEvent.sizeInBytes = InputEvent.kBaseEventSize + sizeof(int) + deviceStateBlockSize;
stateEventPtr->baseEvent.time = currentTime;
stateEventPtr->baseEvent.deviceId = device.deviceId;
stateEventPtr->baseEvent.eventId = -1;
stateEventPtr->stateFormat = device.m_StateBlock.format;
// Decide whether we perform a soft reset or a hard reset.
if (isHardReset)
{
// Perform a hard reset where we wipe the entire device and set a full
// reset request to the backend.
UnsafeUtility.MemCpy(statePtr,
(byte*)defaultStatePtr + stateBlock.byteOffset,
deviceStateBlockSize);
}
else
{
// Perform a soft reset where we exclude any dontReset control (which is automatically
// toggled on for noisy controls) and do *NOT* send a reset request to the backend.
var currentStatePtr = device.currentStatePtr;
var resetMaskPtr = m_StateBuffers.resetMaskBuffer;
// To preserve values from dontReset controls, we need to first copy their current values.
UnsafeUtility.MemCpy(statePtr,
(byte*)currentStatePtr + stateBlock.byteOffset,
deviceStateBlockSize);
// And then we copy over default values masked by dontReset bits.
MemoryHelpers.MemCpyMasked(statePtr,
(byte*)defaultStatePtr + stateBlock.byteOffset,
(int)deviceStateBlockSize,
(byte*)resetMaskPtr + stateBlock.byteOffset);
}
UpdateState(device, defaultUpdateType, statePtr, 0, deviceStateBlockSize, currentTime,
new InputEventPtr((InputEvent*)stateEventPtr));
}
}
// In the editor, we don't want to issue RequestResetCommand to devices based on focus of the game view
// as this would also reset device state for the editor. And we don't need the reset commands in this case
// as -- unlike in the player --, Unity keeps running and we will keep seeing OS messages for these devices.
// So, in the editor, we generally suppress reset commands.
//
// The only exception is when the editor itself loses focus. We issue sync requests to all devices when
// coming back into focus. But for any device that doesn't support syncs, we actually do want to have a
// reset command reach the background.
//
// Finally, in the player, we also avoid reset commands when disabling a device as these are pointless.
// We sync/reset when enabling a device in the backend.
var doIssueResetCommand = isHardReset;
if (issueResetCommand != null)
doIssueResetCommand = issueResetCommand.Value;
#if UNITY_EDITOR
else if (m_Settings.editorInputBehaviorInPlayMode != InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView)
doIssueResetCommand = false;
#endif
if (doIssueResetCommand)
device.RequestReset();
}
public InputDevice TryGetDevice(string nameOrLayout)
{
if (string.IsNullOrEmpty(nameOrLayout))
throw new ArgumentException("Name is null or empty.", nameof(nameOrLayout));
if (m_DevicesCount == 0)
return null;
var nameOrLayoutLowerCase = nameOrLayout.ToLower();
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
if (device.m_Name.ToLower() == nameOrLayoutLowerCase ||
device.m_Layout.ToLower() == nameOrLayoutLowerCase)
return device;
}
return null;
}
public InputDevice GetDevice(string nameOrLayout)
{
var device = TryGetDevice(nameOrLayout);
if (device == null)
throw new ArgumentException($"Cannot find device with name or layout '{nameOrLayout}'", nameof(nameOrLayout));
return device;
}
public InputDevice TryGetDevice(Type layoutType)
{
var layoutName = m_Layouts.TryFindLayoutForType(layoutType);
if (layoutName.IsEmpty())
return null;
return TryGetDevice(layoutName);
}
public InputDevice TryGetDeviceById(int id)
{
if (m_DevicesById.TryGetValue(id, out var result))
return result;
return null;
}
// Adds any device that's been reported to the system but could not be matched to
// a layout to the given list.
public int GetUnsupportedDevices(List<InputDeviceDescription> descriptions)
{
if (descriptions == null)
throw new ArgumentNullException(nameof(descriptions));
var numFound = 0;
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
if (TryGetDeviceById(m_AvailableDevices[i].deviceId) != null)
continue;
descriptions.Add(m_AvailableDevices[i].description);
++numFound;
}
return numFound;
}
// We have three different levels of disabling a device.
internal enum DeviceDisableScope
{
Everywhere, // Device is disabled globally and explicitly. Should neither send nor receive events.
InFrontendOnly, // Device is only disabled on managed side but not in backend. Should keep sending events but should not receive them (useful for redirecting their data).
TemporaryWhilePlayerIsInBackground, // Device has been disabled automatically and temporarily by system while application is running in the background.
}
public void EnableOrDisableDevice(InputDevice device, bool enable, DeviceDisableScope scope = default)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
// Synchronize the enable/disabled state of the device.
if (enable)
{
////REVIEW: Do we really want to allow overriding disabledWhileInBackground like it currently does?
// Enable device.
switch (scope)
{
case DeviceDisableScope.Everywhere:
device.disabledWhileInBackground = false;
if (!device.disabledInFrontend && !device.disabledInRuntime)
return;
if (device.disabledInRuntime)
{
device.ExecuteEnableCommand();
device.disabledInRuntime = false;
}
if (device.disabledInFrontend)
{
if (!device.RequestSync())
ResetDevice(device);
device.disabledInFrontend = false;
}
break;
case DeviceDisableScope.InFrontendOnly:
device.disabledWhileInBackground = false;
if (!device.disabledInFrontend && device.disabledInRuntime)
return;
if (!device.disabledInRuntime)
{
device.ExecuteDisableCommand();
device.disabledInRuntime = true;
}
if (device.disabledInFrontend)
{
if (!device.RequestSync())
ResetDevice(device);
device.disabledInFrontend = false;
}
break;
case DeviceDisableScope.TemporaryWhilePlayerIsInBackground:
if (device.disabledWhileInBackground)
{
if (device.disabledInRuntime)
{
device.ExecuteEnableCommand();
device.disabledInRuntime = false;
}
if (!device.RequestSync())
ResetDevice(device);
device.disabledWhileInBackground = false;
}
break;
}
}
else
{
// Disable device.
switch (scope)
{
case DeviceDisableScope.Everywhere:
device.disabledWhileInBackground = false;
if (device.disabledInFrontend && device.disabledInRuntime)
return;
if (!device.disabledInRuntime)
{
device.ExecuteDisableCommand();
device.disabledInRuntime = true;
}
if (!device.disabledInFrontend)
{
// When disabling a device, also issuing a reset in the backend is pointless.
ResetDevice(device, issueResetCommand: false);
device.disabledInFrontend = true;
}
break;
case DeviceDisableScope.InFrontendOnly:
device.disabledWhileInBackground = false;
if (!device.disabledInRuntime && device.disabledInFrontend)
return;
if (device.disabledInRuntime)
{
device.ExecuteEnableCommand();
device.disabledInRuntime = false;
}
if (!device.disabledInFrontend)
{
// When disabling a device, also issuing a reset in the backend is pointless.
ResetDevice(device, issueResetCommand: false);
device.disabledInFrontend = true;
}
break;
case DeviceDisableScope.TemporaryWhilePlayerIsInBackground:
// Won't flag a device as DisabledWhileInBackground if it is explicitly disabled in
// the frontend.
if (device.disabledInFrontend || device.disabledWhileInBackground)
return;
device.disabledWhileInBackground = true;
ResetDevice(device, issueResetCommand: false);
#if UNITY_EDITOR
if (m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView)
#endif
{
device.ExecuteDisableCommand();
device.disabledInRuntime = true;
}
break;
}
}
// Let listeners know.
var deviceChange = enable ? InputDeviceChange.Enabled : InputDeviceChange.Disabled;
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, deviceChange, "InputSystem.onDeviceChange");
}
private unsafe void QueueEvent(InputEvent* eventPtr)
{
// If we're currently in OnUpdate(), the m_InputEventStream will be open. In that case,
// append events directly to that buffer and do *NOT* go into native.
if (m_InputEventStream.isOpen)
{
m_InputEventStream.Write(eventPtr);
return;
}
// Don't bother keeping the data on the managed side. Just stuff the raw data directly
// into the native buffers. This also means this method is thread-safe.
m_Runtime.QueueEvent(eventPtr);
}
public unsafe void QueueEvent(InputEventPtr ptr)
{
QueueEvent(ptr.data);
}
public unsafe void QueueEvent<TEvent>(ref TEvent inputEvent)
where TEvent : struct, IInputEventTypeInfo
{
QueueEvent((InputEvent*)UnsafeUtility.AddressOf(ref inputEvent));
}
public void Update()
{
Update(defaultUpdateType);
}
public void Update(InputUpdateType updateType)
{
m_Runtime.Update(updateType);
}
internal void Initialize(IInputRuntime runtime, InputSettings settings)
{
Debug.Assert(settings != null);
m_Settings = settings;
InitializeData();
InstallRuntime(runtime);
InstallGlobals();
ApplySettings();
}
internal void Destroy()
{
// There isn't really much of a point in removing devices but we still
// want to clear out any global state they may be keeping. So just tell
// the devices that they got removed without actually removing them.
for (var i = 0; i < m_DevicesCount; ++i)
m_Devices[i].NotifyRemoved();
// Free all state memory.
m_StateBuffers.FreeAll();
// Uninstall globals.
UninstallGlobals();
// Destroy settings if they are temporary.
if (m_Settings != null && m_Settings.hideFlags == HideFlags.HideAndDontSave)
Object.DestroyImmediate(m_Settings);
}
internal void InitializeData()
{
m_Layouts.Allocate();
m_Processors.Initialize();
m_Interactions.Initialize();
m_Composites.Initialize();
m_DevicesById = new Dictionary<int, InputDevice>();
// Determine our default set of enabled update types. By
// default we enable both fixed and dynamic update because
// we don't know which one the user is going to use. The user
// can manually turn off one of them to optimize operation.
m_UpdateMask = InputUpdateType.Dynamic | InputUpdateType.Fixed;
m_HasFocus = Application.isFocused;
#if UNITY_EDITOR
m_EditorIsActive = true;
m_UpdateMask |= InputUpdateType.Editor;
#endif
// Default polling frequency is 60 Hz.
m_PollingFrequency = 60;
// Register layouts.
// NOTE: Base layouts must be registered before their derived layouts
// for the detection of base layouts to work.
RegisterControlLayout("Axis", typeof(AxisControl)); // Controls.
RegisterControlLayout("Button", typeof(ButtonControl));
RegisterControlLayout("DiscreteButton", typeof(DiscreteButtonControl));
RegisterControlLayout("Key", typeof(KeyControl));
RegisterControlLayout("Analog", typeof(AxisControl));
RegisterControlLayout("Integer", typeof(IntegerControl));
RegisterControlLayout("Digital", typeof(IntegerControl));
RegisterControlLayout("Double", typeof(DoubleControl));
RegisterControlLayout("Vector2", typeof(Vector2Control));
RegisterControlLayout("Vector3", typeof(Vector3Control));
RegisterControlLayout("Delta", typeof(DeltaControl));
RegisterControlLayout("Quaternion", typeof(QuaternionControl));
RegisterControlLayout("Stick", typeof(StickControl));
RegisterControlLayout("Dpad", typeof(DpadControl));
RegisterControlLayout("DpadAxis", typeof(DpadControl.DpadAxisControl));
RegisterControlLayout("AnyKey", typeof(AnyKeyControl));
RegisterControlLayout("Touch", typeof(TouchControl));
RegisterControlLayout("TouchPhase", typeof(TouchPhaseControl));
RegisterControlLayout("TouchPress", typeof(TouchPressControl));
RegisterControlLayout("Gamepad", typeof(Gamepad)); // Devices.
RegisterControlLayout("Joystick", typeof(Joystick));
RegisterControlLayout("Keyboard", typeof(Keyboard));
RegisterControlLayout("Pointer", typeof(Pointer));
RegisterControlLayout("Mouse", typeof(Mouse));
RegisterControlLayout("Pen", typeof(Pen));
RegisterControlLayout("Touchscreen", typeof(Touchscreen));
RegisterControlLayout("Sensor", typeof(Sensor));
RegisterControlLayout("Accelerometer", typeof(Accelerometer));
RegisterControlLayout("Gyroscope", typeof(Gyroscope));
RegisterControlLayout("GravitySensor", typeof(GravitySensor));
RegisterControlLayout("AttitudeSensor", typeof(AttitudeSensor));
RegisterControlLayout("LinearAccelerationSensor", typeof(LinearAccelerationSensor));
RegisterControlLayout("MagneticFieldSensor", typeof(MagneticFieldSensor));
RegisterControlLayout("LightSensor", typeof(LightSensor));
RegisterControlLayout("PressureSensor", typeof(PressureSensor));
RegisterControlLayout("HumiditySensor", typeof(HumiditySensor));
RegisterControlLayout("AmbientTemperatureSensor", typeof(AmbientTemperatureSensor));
RegisterControlLayout("StepCounter", typeof(StepCounter));
RegisterControlLayout("TrackedDevice", typeof(TrackedDevice));
// Precompiled layouts.
RegisterPrecompiledLayout<FastKeyboard>(FastKeyboard.metadata);
RegisterPrecompiledLayout<FastTouchscreen>(FastTouchscreen.metadata);
RegisterPrecompiledLayout<FastMouse>(FastMouse.metadata);
// Register processors.
processors.AddTypeRegistration("Invert", typeof(InvertProcessor));
processors.AddTypeRegistration("InvertVector2", typeof(InvertVector2Processor));
processors.AddTypeRegistration("InvertVector3", typeof(InvertVector3Processor));
processors.AddTypeRegistration("Clamp", typeof(ClampProcessor));
processors.AddTypeRegistration("Normalize", typeof(NormalizeProcessor));
processors.AddTypeRegistration("NormalizeVector2", typeof(NormalizeVector2Processor));
processors.AddTypeRegistration("NormalizeVector3", typeof(NormalizeVector3Processor));
processors.AddTypeRegistration("Scale", typeof(ScaleProcessor));
processors.AddTypeRegistration("ScaleVector2", typeof(ScaleVector2Processor));
processors.AddTypeRegistration("ScaleVector3", typeof(ScaleVector3Processor));
processors.AddTypeRegistration("StickDeadzone", typeof(StickDeadzoneProcessor));
processors.AddTypeRegistration("AxisDeadzone", typeof(AxisDeadzoneProcessor));
processors.AddTypeRegistration("CompensateDirection", typeof(CompensateDirectionProcessor));
processors.AddTypeRegistration("CompensateRotation", typeof(CompensateRotationProcessor));
#if UNITY_EDITOR
processors.AddTypeRegistration("AutoWindowSpace", typeof(EditorWindowSpaceProcessor));
#endif
// Register interactions.
interactions.AddTypeRegistration("Hold", typeof(HoldInteraction));
interactions.AddTypeRegistration("Tap", typeof(TapInteraction));
interactions.AddTypeRegistration("SlowTap", typeof(SlowTapInteraction));
interactions.AddTypeRegistration("MultiTap", typeof(MultiTapInteraction));
interactions.AddTypeRegistration("Press", typeof(PressInteraction));
// Register composites.
composites.AddTypeRegistration("1DAxis", typeof(AxisComposite));
composites.AddTypeRegistration("2DVector", typeof(Vector2Composite));
composites.AddTypeRegistration("3DVector", typeof(Vector3Composite));
composites.AddTypeRegistration("Axis", typeof(AxisComposite));// Alias for pre-0.2 name.
composites.AddTypeRegistration("Dpad", typeof(Vector2Composite));// Alias for pre-0.2 name.
composites.AddTypeRegistration("ButtonWithOneModifier", typeof(ButtonWithOneModifier));
composites.AddTypeRegistration("ButtonWithTwoModifiers", typeof(ButtonWithTwoModifiers));
composites.AddTypeRegistration("OneModifier", typeof(OneModifierComposite));
composites.AddTypeRegistration("TwoModifiers", typeof(TwoModifiersComposite));
}
internal void InstallRuntime(IInputRuntime runtime)
{
if (m_Runtime != null)
{
m_Runtime.onUpdate = null;
m_Runtime.onBeforeUpdate = null;
m_Runtime.onDeviceDiscovered = null;
m_Runtime.onPlayerFocusChanged = null;
m_Runtime.onShouldRunUpdate = null;
#if UNITY_EDITOR
m_Runtime.onPlayerLoopInitialization = null;
#endif
}
m_Runtime = runtime;
m_Runtime.onUpdate = OnUpdate;
m_Runtime.onDeviceDiscovered = OnNativeDeviceDiscovered;
m_Runtime.onPlayerFocusChanged = OnFocusChanged;
m_Runtime.onShouldRunUpdate = ShouldRunUpdate;
#if UNITY_EDITOR
m_Runtime.onPlayerLoopInitialization = OnPlayerLoopInitialization;
#endif
m_Runtime.pollingFrequency = pollingFrequency;
m_HasFocus = m_Runtime.isPlayerFocused;
// We only hook NativeInputSystem.onBeforeUpdate if necessary.
if (m_BeforeUpdateListeners.length > 0 || m_HaveDevicesWithStateCallbackReceivers)
{
m_Runtime.onBeforeUpdate = OnBeforeUpdate;
m_NativeBeforeUpdateHooked = true;
}
#if UNITY_ANALYTICS || UNITY_EDITOR
InputAnalytics.Initialize(this);
m_Runtime.onShutdown = () => InputAnalytics.OnShutdown(this);
#endif
}
internal void InstallGlobals()
{
Debug.Assert(m_Runtime != null);
InputControlLayout.s_Layouts = m_Layouts;
InputProcessor.s_Processors = m_Processors;
InputInteraction.s_Interactions = m_Interactions;
InputBindingComposite.s_Composites = m_Composites;
InputRuntime.s_Instance = m_Runtime;
InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup =
m_Runtime.currentTimeOffsetToRealtimeSinceStartup;
// Reset update state.
InputUpdate.Restore(new InputUpdate.SerializedState());
unsafe
{
InputStateBuffers.SwitchTo(m_StateBuffers, InputUpdateType.Dynamic);
InputStateBuffers.s_DefaultStateBuffer = m_StateBuffers.defaultStateBuffer;
InputStateBuffers.s_NoiseMaskBuffer = m_StateBuffers.noiseMaskBuffer;
InputStateBuffers.s_ResetMaskBuffer = m_StateBuffers.resetMaskBuffer;
}
}
internal void UninstallGlobals()
{
if (ReferenceEquals(InputControlLayout.s_Layouts.baseLayoutTable, m_Layouts.baseLayoutTable))
InputControlLayout.s_Layouts = new InputControlLayout.Collection();
if (ReferenceEquals(InputProcessor.s_Processors.table, m_Processors.table))
InputProcessor.s_Processors = new TypeTable();
if (ReferenceEquals(InputInteraction.s_Interactions.table, m_Interactions.table))
InputInteraction.s_Interactions = new TypeTable();
if (ReferenceEquals(InputBindingComposite.s_Composites.table, m_Composites.table))
InputBindingComposite.s_Composites = new TypeTable();
// Clear layout cache.
InputControlLayout.s_CacheInstance = default;
InputControlLayout.s_CacheInstanceRef = 0;
// Detach from runtime.
if (m_Runtime != null)
{
m_Runtime.onUpdate = null;
m_Runtime.onDeviceDiscovered = null;
m_Runtime.onBeforeUpdate = null;
m_Runtime.onPlayerFocusChanged = null;
m_Runtime.onShouldRunUpdate = null;
if (ReferenceEquals(InputRuntime.s_Instance, m_Runtime))
InputRuntime.s_Instance = null;
}
}
[Serializable]
internal struct AvailableDevice
{
public InputDeviceDescription description;
public int deviceId;
public bool isNative;
public bool isRemoved;
}
// Used by EditorInputControlLayoutCache to determine whether its state is outdated.
internal int m_LayoutRegistrationVersion;
private float m_PollingFrequency;
internal InputControlLayout.Collection m_Layouts;
private TypeTable m_Processors;
private TypeTable m_Interactions;
private TypeTable m_Composites;
private int m_DevicesCount;
private InputDevice[] m_Devices;
private Dictionary<int, InputDevice> m_DevicesById;
internal int m_AvailableDeviceCount;
internal AvailableDevice[] m_AvailableDevices; // A record of all devices reported to the system (from native or user code).
////REVIEW: should these be weak-referenced?
internal int m_DisconnectedDevicesCount;
internal InputDevice[] m_DisconnectedDevices;
internal InputUpdateType m_UpdateMask; // Which of our update types are enabled.
private InputUpdateType m_CurrentUpdate;
internal InputStateBuffers m_StateBuffers;
#if UNITY_EDITOR
// remember time offset to correctly restore it after editor mode is done
private double latestNonEditorTimeOffsetToRealtimeSinceStartup;
#endif
// We don't use UnityEvents and thus don't persist the callbacks during domain reloads.
// Restoration of UnityActions is unreliable and it's too easy to end up with double
// registrations what will lead to all kinds of misbehavior.
private CallbackArray<DeviceChangeListener> m_DeviceChangeListeners;
private CallbackArray<DeviceStateChangeListener> m_DeviceStateChangeListeners;
private CallbackArray<InputDeviceFindControlLayoutDelegate> m_DeviceFindLayoutCallbacks;
internal CallbackArray<InputDeviceCommandDelegate> m_DeviceCommandCallbacks;
private CallbackArray<LayoutChangeListener> m_LayoutChangeListeners;
private CallbackArray<EventListener> m_EventListeners;
private CallbackArray<UpdateListener> m_BeforeUpdateListeners;
private CallbackArray<UpdateListener> m_AfterUpdateListeners;
private CallbackArray<Action> m_SettingsChangedListeners;
private bool m_NativeBeforeUpdateHooked;
private bool m_HaveDevicesWithStateCallbackReceivers;
private bool m_HasFocus;
private InputEventStream m_InputEventStream;
// We want to sync devices when the editor comes back into focus. Unfortunately, there's no
// callback for this so we have to poll this state.
#if UNITY_EDITOR
private bool m_EditorIsActive;
#endif
// We allocate the 'executeDeviceCommand' closure passed to 'onFindLayoutForDevice'
// only once to avoid creating garbage.
private InputDeviceExecuteCommandDelegate m_DeviceFindExecuteCommandDelegate;
private int m_DeviceFindExecuteCommandDeviceId;
#if UNITY_ANALYTICS || UNITY_EDITOR
private bool m_HaveSentStartupAnalytics;
#endif
internal IInputRuntime m_Runtime;
internal InputMetrics m_Metrics;
internal InputSettings m_Settings;
#if UNITY_EDITOR
internal IInputDiagnostics m_Diagnostics;
#endif
////REVIEW: Make it so that device names *always* have a number appended? (i.e. Gamepad1, Gamepad2, etc. instead of Gamepad, Gamepad1, etc)
private void MakeDeviceNameUnique(InputDevice device)
{
if (m_DevicesCount == 0)
return;
var deviceName = StringHelpers.MakeUniqueName(device.name, m_Devices, x => x != null ? x.name : string.Empty);
if (deviceName != device.name)
{
// If we have changed the name of the device, nuke all path strings in the control
// hierarchy so that they will get re-recreated when queried.
ResetControlPathsRecursive(device);
// Assign name.
device.m_Name = new InternedString(deviceName);
}
}
private static void ResetControlPathsRecursive(InputControl control)
{
control.m_Path = null;
var children = control.children;
var childCount = children.Count;
for (var i = 0; i < childCount; ++i)
ResetControlPathsRecursive(children[i]);
}
private void AssignUniqueDeviceId(InputDevice device)
{
// If the device already has an ID, make sure it's unique.
if (device.deviceId != InputDevice.InvalidDeviceId)
{
// Safety check to make sure out IDs are really unique.
// Given they are assigned by the native system they should be fine
// but let's make sure.
var existingDeviceWithId = TryGetDeviceById(device.deviceId);
if (existingDeviceWithId != null)
throw new InvalidOperationException(
$"Duplicate device ID {device.deviceId} detected for devices '{device.name}' and '{existingDeviceWithId.name}'");
}
else
{
device.m_DeviceId = m_Runtime.AllocateDeviceId();
}
}
// (Re)allocates state buffers and assigns each device that's been added
// a segment of the buffer. Preserves the current state of devices.
// NOTE: Installs the buffers globally.
private unsafe void ReallocateStateBuffers()
{
var oldBuffers = m_StateBuffers;
// Allocate new buffers.
var newBuffers = new InputStateBuffers();
newBuffers.AllocateAll(m_Devices, m_DevicesCount);
// Migrate state.
newBuffers.MigrateAll(m_Devices, m_DevicesCount, oldBuffers);
// Install the new buffers.
oldBuffers.FreeAll();
m_StateBuffers = newBuffers;
InputStateBuffers.s_DefaultStateBuffer = newBuffers.defaultStateBuffer;
InputStateBuffers.s_NoiseMaskBuffer = newBuffers.noiseMaskBuffer;
InputStateBuffers.s_ResetMaskBuffer = newBuffers.resetMaskBuffer;
// Switch to buffers.
InputStateBuffers.SwitchTo(m_StateBuffers,
InputUpdate.s_LatestUpdateType != InputUpdateType.None ? InputUpdate.s_LatestUpdateType : defaultUpdateType);
////TODO: need to update state change monitors
}
/// <summary>
/// Initialize default state for given device.
/// </summary>
/// <param name="device">A newly added input device.</param>
/// <remarks>
/// For every device, one copy of its state is kept around which is initialized with the default
/// values for the device. If the device has no control that has an explicitly specified control
/// value, the buffer simply contains all zeroes.
///
/// The default state buffer is initialized once when a device is added to the system and then
/// migrated by <see cref="InputStateBuffers"/> like other device state and removed when the device
/// is removed from the system.
/// </remarks>
private unsafe void InitializeDefaultState(InputDevice device)
{
// Nothing to do if device has a default state of all zeroes.
if (!device.hasControlsWithDefaultState)
return;
// Otherwise go through each control and write its default value.
var controls = device.allControls;
var controlCount = controls.Count;
var defaultStateBuffer = m_StateBuffers.defaultStateBuffer;
for (var n = 0; n < controlCount; ++n)
{
var control = controls[n];
if (!control.hasDefaultState)
continue;
control.m_StateBlock.Write(defaultStateBuffer, control.m_DefaultState);
}
// Copy default state to all front and back buffers.
var stateBlock = device.m_StateBlock;
var deviceIndex = device.m_DeviceIndex;
if (m_StateBuffers.m_PlayerStateBuffers.valid)
{
stateBlock.CopyToFrom(m_StateBuffers.m_PlayerStateBuffers.GetFrontBuffer(deviceIndex), defaultStateBuffer);
stateBlock.CopyToFrom(m_StateBuffers.m_PlayerStateBuffers.GetBackBuffer(deviceIndex), defaultStateBuffer);
}
#if UNITY_EDITOR
if (m_StateBuffers.m_EditorStateBuffers.valid)
{
stateBlock.CopyToFrom(m_StateBuffers.m_EditorStateBuffers.GetFrontBuffer(deviceIndex), defaultStateBuffer);
stateBlock.CopyToFrom(m_StateBuffers.m_EditorStateBuffers.GetBackBuffer(deviceIndex), defaultStateBuffer);
}
#endif
}
private unsafe void InitializeDeviceState(InputDevice device)
{
Debug.Assert(device != null, "Device must not be null");
Debug.Assert(device.added, "Device must have been added");
Debug.Assert(device.stateBlock.byteOffset != InputStateBlock.InvalidOffset, "Device state block offset is invalid");
Debug.Assert(device.stateBlock.byteOffset + device.stateBlock.alignedSizeInBytes <= m_StateBuffers.sizePerBuffer,
"Device state block is not contained in state buffer");
var controls = device.allControls;
var controlCount = controls.Count;
var resetMaskBuffer = m_StateBuffers.resetMaskBuffer;
var haveControlsWithDefaultState = device.hasControlsWithDefaultState;
// Assume that everything in the device is noise. This way we also catch memory regions
// that are not actually covered by a control and implicitly mark them as noise (e.g. the
// report ID in HID input reports).
//
// NOTE: Noise is indicated by *unset* bits so we don't have to do anything here to start
// with all-noise as we expect noise mask memory to be cleared on allocation.
var noiseMaskBuffer = m_StateBuffers.noiseMaskBuffer;
// We first toggle all bits *on* and then toggle bits for noisy and dontReset controls *off* individually.
// We do this instead of just leaving all bits *off* and then going through controls that aren't noisy/dontReset *on*.
// If we did the latter, we'd have the problem that a parent control such as TouchControl would toggle on bits for
// the entirety of its state block and thus cover the state of all its child controls.
MemoryHelpers.SetBitsInBuffer(noiseMaskBuffer, (int)device.stateBlock.byteOffset, 0, (int)device.stateBlock.sizeInBits, false);
MemoryHelpers.SetBitsInBuffer(resetMaskBuffer, (int)device.stateBlock.byteOffset, 0, (int)device.stateBlock.sizeInBits, true);
// Go through controls.
var defaultStateBuffer = m_StateBuffers.defaultStateBuffer;
for (var n = 0; n < controlCount; ++n)
{
var control = controls[n];
// Don't allow controls that hijack state from other controls to set independent noise or dontReset flags.
if (control.usesStateFromOtherControl)
continue;
if (!control.noisy || control.dontReset)
{
ref var stateBlock = ref control.m_StateBlock;
Debug.Assert(stateBlock.byteOffset != InputStateBlock.InvalidOffset, "Byte offset is invalid on control's state block");
Debug.Assert(stateBlock.bitOffset != InputStateBlock.InvalidOffset, "Bit offset is invalid on control's state block");
Debug.Assert(stateBlock.sizeInBits != InputStateBlock.InvalidOffset, "Size is invalid on control's state block");
Debug.Assert(stateBlock.byteOffset >= device.stateBlock.byteOffset, "Control's offset is located below device's offset");
Debug.Assert(stateBlock.byteOffset + stateBlock.alignedSizeInBytes <=
device.stateBlock.byteOffset + device.stateBlock.alignedSizeInBytes, "Control state block lies outside of state buffer");
// If control isn't noisy, toggle its bits *on* in the noise mask.
if (!control.noisy)
MemoryHelpers.SetBitsInBuffer(noiseMaskBuffer, (int)stateBlock.byteOffset, (int)stateBlock.bitOffset,
(int)stateBlock.sizeInBits, true);
// If control shouldn't be reset, toggle its bits *off* in the reset mask.
if (control.dontReset)
MemoryHelpers.SetBitsInBuffer(resetMaskBuffer, (int)stateBlock.byteOffset, (int)stateBlock.bitOffset,
(int)stateBlock.sizeInBits, false);
}
// If control has default state, write it into to the device's default state.
if (haveControlsWithDefaultState && control.hasDefaultState)
control.m_StateBlock.Write(defaultStateBuffer, control.m_DefaultState);
}
// Copy default state to all front and back buffers.
if (haveControlsWithDefaultState)
{
ref var deviceStateBlock = ref device.m_StateBlock;
var deviceIndex = device.m_DeviceIndex;
if (m_StateBuffers.m_PlayerStateBuffers.valid)
{
deviceStateBlock.CopyToFrom(m_StateBuffers.m_PlayerStateBuffers.GetFrontBuffer(deviceIndex), defaultStateBuffer);
deviceStateBlock.CopyToFrom(m_StateBuffers.m_PlayerStateBuffers.GetBackBuffer(deviceIndex), defaultStateBuffer);
}
#if UNITY_EDITOR
if (m_StateBuffers.m_EditorStateBuffers.valid)
{
deviceStateBlock.CopyToFrom(m_StateBuffers.m_EditorStateBuffers.GetFrontBuffer(deviceIndex), defaultStateBuffer);
deviceStateBlock.CopyToFrom(m_StateBuffers.m_EditorStateBuffers.GetBackBuffer(deviceIndex), defaultStateBuffer);
}
#endif
}
}
private void OnNativeDeviceDiscovered(int deviceId, string deviceDescriptor)
{
// Make sure we're not adding to m_AvailableDevices before we restored what we
// had before a domain reload.
RestoreDevicesAfterDomainReloadIfNecessary();
// See if we have a disconnected device we can revive.
// NOTE: We do this all the way up here as the first thing before we even parse the JSON descriptor so
// if we do have a device we can revive, we can do so without allocating any GC memory.
var device = TryMatchDisconnectedDevice(deviceDescriptor);
// Parse description, if need be.
var description = device?.description ?? InputDeviceDescription.FromJson(deviceDescriptor);
// Add it.
var markAsRemoved = false;
try
{
// If we have a restricted set of supported devices, first check if it's a device
// we should support.
if (m_Settings.supportedDevices.Count > 0)
{
var layout = device != null ? device.m_Layout : TryFindMatchingControlLayout(ref description, deviceId);
if (!IsDeviceLayoutMarkedAsSupportedInSettings(layout))
{
// Not supported. Ignore device. Still will get added to m_AvailableDevices
// list in finally clause below. If later the set of supported devices changes
// so that the device is now supported, ApplySettings() will pull it back out
// and create the device.
markAsRemoved = true;
return;
}
}
if (device != null)
{
// It's a device we pulled from the disconnected list. Update the device with the
// new ID, re-add it and notify that we've reconnected.
device.m_DeviceId = deviceId;
device.m_DeviceFlags |= InputDevice.DeviceFlags.Native;
device.m_DeviceFlags &= ~InputDevice.DeviceFlags.DisabledInFrontend;
device.m_DeviceFlags &= ~InputDevice.DeviceFlags.DisabledWhileInBackground;
device.m_DeviceFlags &= ~InputDevice.DeviceFlags.DisabledStateHasBeenQueriedFromRuntime;
AddDevice(device);
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners, device, InputDeviceChange.Reconnected,
"InputSystem.onDeviceChange");
}
else
{
// Go through normal machinery to try to create a new device.
AddDevice(description, throwIfNoLayoutFound: false, deviceId: deviceId,
deviceFlags: InputDevice.DeviceFlags.Native);
}
}
// We're catching exceptions very aggressively here. The reason is that we don't want
// exceptions thrown as a result of trying to create devices from device discoveries reported
// by native to break the system as a whole. Instead, we want to make the error visible but then
// go and work with whatever devices we *did* manage to create successfully.
catch (Exception exception)
{
Debug.LogError($"Could not create a device for '{description}' (exception: {exception})");
}
finally
{
// Remember it. Do this *after* the AddDevice() call above so that if there's
// a listener creating layouts on the fly we won't end up matching this device and
// create an InputDevice right away (which would then conflict with the one we
// create in AddDevice).
ArrayHelpers.AppendWithCapacity(ref m_AvailableDevices, ref m_AvailableDeviceCount,
new AvailableDevice
{
description = description,
deviceId = deviceId,
isNative = true,
isRemoved = markAsRemoved,
});
}
}
private InputDevice TryMatchDisconnectedDevice(string deviceDescriptor)
{
for (var i = 0; i < m_DisconnectedDevicesCount; ++i)
{
var device = m_DisconnectedDevices[i];
var description = device.description;
// We don't parse the full description but rather go property by property in order to not
// allocate GC memory if we can avoid it.
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("interface", description.interfaceName, deviceDescriptor))
continue;
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("product", description.product, deviceDescriptor))
continue;
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("manufacturer", description.manufacturer, deviceDescriptor))
continue;
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("type", description.deviceClass, deviceDescriptor))
continue;
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("capabilities", description.capabilities, deviceDescriptor))
continue;
if (!InputDeviceDescription.ComparePropertyToDeviceDescriptor("serial", description.serial, deviceDescriptor))
continue;
ArrayHelpers.EraseAtWithCapacity(m_DisconnectedDevices, ref m_DisconnectedDevicesCount, i);
return device;
}
return null;
}
private void InstallBeforeUpdateHookIfNecessary()
{
if (m_NativeBeforeUpdateHooked || m_Runtime == null)
return;
m_Runtime.onBeforeUpdate = OnBeforeUpdate;
m_NativeBeforeUpdateHooked = true;
}
private void RestoreDevicesAfterDomainReloadIfNecessary()
{
#if UNITY_EDITOR
if (m_SavedDeviceStates != null)
RestoreDevicesAfterDomainReload();
#endif
}
#if UNITY_EDITOR
private void SyncAllDevicesWhenEditorIsActivated()
{
var isActive = m_Runtime.isEditorActive;
if (isActive == m_EditorIsActive)
return;
m_EditorIsActive = isActive;
if (m_EditorIsActive)
SyncAllDevices();
}
private void SyncAllDevices()
{
for (var i = 0; i < m_DevicesCount; ++i)
{
// When the editor comes back into focus, we actually do want resets to happen
// for devices that don't support syncs as they will likely have missed input while
// we were in the background.
if (!m_Devices[i].RequestSync())
ResetDevice(m_Devices[i], issueResetCommand: true);
}
}
internal void SyncAllDevicesAfterEnteringPlayMode()
{
// Because we ignore all events between exiting edit mode and entering play mode,
// that includes any potential device resets/syncs/etc,
// we need to resync all devices after we're in play mode proper.
////TODO: this is a hacky workaround, implement a proper solution where events from sync/resets are not ignored.
SyncAllDevices();
}
#endif
private void WarnAboutDevicesFailingToRecreateAfterDomainReload()
{
// If we still have any saved device states, we have devices that we couldn't figure
// out how to recreate after a domain reload. Log a warning for each of them and
// let go of them.
#if UNITY_EDITOR
if (m_SavedDeviceStates == null)
return;
for (var i = 0; i < m_SavedDeviceStates.Length; ++i)
{
ref var state = ref m_SavedDeviceStates[i];
Debug.LogWarning($"Could not recreate device '{state.name}' with layout '{state.layout}' after domain reload");
}
// At this point, we throw the device states away and forget about
// what we had before the domain reload.
m_SavedDeviceStates = null;
#endif
}
private void OnBeforeUpdate(InputUpdateType updateType)
{
// Restore devices before checking update mask. See InputSystem.RunInitialUpdate().
RestoreDevicesAfterDomainReloadIfNecessary();
if ((updateType & m_UpdateMask) == 0)
return;
InputStateBuffers.SwitchTo(m_StateBuffers, updateType);
InputUpdate.OnBeforeUpdate(updateType);
// For devices that have state callbacks, tell them we're carrying state over
// into the next frame.
if (m_HaveDevicesWithStateCallbackReceivers && updateType != InputUpdateType.BeforeRender) ////REVIEW: before-render handling is probably wrong
{
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
if (!device.hasStateCallbacks)
continue;
// NOTE: We do *not* perform a buffer flip here as we do not want to change what is the
// current and what is the previous state when we carry state forward. Rather,
// OnBeforeUpdate, if it modifies state, it modifies the current state directly.
// Also, for the same reasons, we do not modify the dynamic/fixed update counts
// on the device. If an event comes in in the upcoming update, it should lead to
// a buffer flip.
((IInputStateCallbackReceiver)device).OnNextUpdate();
}
}
DelegateHelpers.InvokeCallbacksSafe(ref m_BeforeUpdateListeners, "onBeforeUpdate");
}
/// <summary>
/// Apply the settings in <see cref="m_Settings"/>.
/// </summary>
internal void ApplySettings()
{
// Sync update mask.
var newUpdateMask = InputUpdateType.Editor;
if ((m_UpdateMask & InputUpdateType.BeforeRender) != 0)
{
// BeforeRender updates are enabled in response to devices needing BeforeRender updates
// so we always preserve this if set.
newUpdateMask |= InputUpdateType.BeforeRender;
}
if (m_Settings.updateMode == InputSettings.s_OldUnsupportedFixedAndDynamicUpdateSetting)
m_Settings.updateMode = InputSettings.UpdateMode.ProcessEventsInDynamicUpdate;
switch (m_Settings.updateMode)
{
case InputSettings.UpdateMode.ProcessEventsInDynamicUpdate:
newUpdateMask |= InputUpdateType.Dynamic;
break;
case InputSettings.UpdateMode.ProcessEventsInFixedUpdate:
newUpdateMask |= InputUpdateType.Fixed;
break;
case InputSettings.UpdateMode.ProcessEventsManually:
newUpdateMask |= InputUpdateType.Manual;
break;
default:
throw new NotSupportedException("Invalid input update mode: " + m_Settings.updateMode);
}
#if UNITY_EDITOR
// In the editor, we force editor updates to be on even if InputEditorUserSettings.lockInputToGameView is
// on as otherwise we'll end up accumulating events in edit mode without anyone flushing the
// queue out regularly.
newUpdateMask |= InputUpdateType.Editor;
#endif
updateMask = newUpdateMask;
////TODO: optimize this so that we don't repeatedly recreate state if we add/remove multiple devices
//// (same goes for not resolving actions repeatedly)
// Check if there's any native device we aren't using ATM which now fits
// the set of supported devices.
AddAvailableDevicesThatAreNowRecognized();
// If the settings restrict the set of supported devices, demote any native
// device we currently have that doesn't fit the requirements.
if (settings.supportedDevices.Count > 0)
{
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
var layout = device.m_Layout;
// If it's not in m_AvailableDevices, we don't automatically remove it.
// Whatever has been added directly through AddDevice(), we keep and don't
// restrict by `supportDevices`.
var isInAvailableDevices = false;
for (var n = 0; n < m_AvailableDeviceCount; ++n)
{
if (m_AvailableDevices[n].deviceId == device.deviceId)
{
isInAvailableDevices = true;
break;
}
}
if (!isInAvailableDevices)
continue;
// If the device layout isn't supported according to the current settings,
// remove the device.
if (!IsDeviceLayoutMarkedAsSupportedInSettings(layout))
{
RemoveDevice(device, keepOnListOfAvailableDevices: true);
--i;
}
}
}
// Apply feature flags.
if (m_Settings.m_FeatureFlags != null)
{
#if UNITY_EDITOR
runPlayerUpdatesInEditMode = m_Settings.IsFeatureEnabled(InputFeatureNames.kRunPlayerUpdatesInEditMode);
#endif
if (m_Settings.IsFeatureEnabled(InputFeatureNames.kUseWindowsGamingInputBackend))
{
var command = UseWindowsGamingInputCommand.Create(true);
if (ExecuteGlobalCommand(ref command) < 0)
Debug.LogError($"Could not enable Windows.Gaming.Input");
}
}
// Cache some values.
Touchscreen.s_TapTime = settings.defaultTapTime;
Touchscreen.s_TapDelayTime = settings.multiTapDelayTime;
Touchscreen.s_TapRadiusSquared = settings.tapRadius * settings.tapRadius;
// Extra clamp here as we can't tell what we're getting from serialized data.
ButtonControl.s_GlobalDefaultButtonPressPoint = Mathf.Clamp(settings.defaultButtonPressPoint, ButtonControl.kMinButtonPressPoint, float.MaxValue);
ButtonControl.s_GlobalDefaultButtonReleaseThreshold = settings.buttonReleaseThreshold;
// Let listeners know.
DelegateHelpers.InvokeCallbacksSafe(ref m_SettingsChangedListeners,
"InputSystem.onSettingsChange");
}
internal unsafe long ExecuteGlobalCommand<TCommand>(ref TCommand command)
where TCommand : struct, IInputDeviceCommandInfo
{
var ptr = (InputDeviceCommand*)UnsafeUtility.AddressOf(ref command);
// device id is irrelevant as we route it based on fourcc internally
return InputRuntime.s_Instance.DeviceCommand(0, ptr);
}
internal void AddAvailableDevicesThatAreNowRecognized()
{
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
var id = m_AvailableDevices[i].deviceId;
if (TryGetDeviceById(id) != null)
continue;
var layout = TryFindMatchingControlLayout(ref m_AvailableDevices[i].description, id);
if (!IsDeviceLayoutMarkedAsSupportedInSettings(layout)) continue;
if (layout.IsEmpty())
{
// If it's a device coming from the runtime, disable it.
if (id != InputDevice.InvalidDeviceId)
{
var command = DisableDeviceCommand.Create();
m_Runtime.DeviceCommand(id, ref command);
}
continue;
}
try
{
AddDevice(m_AvailableDevices[i].description, layout, deviceId: id,
deviceFlags: m_AvailableDevices[i].isNative ? InputDevice.DeviceFlags.Native : 0);
}
catch (Exception)
{
// the user might have changed the layout of one device, but others in the system might still have
// layouts we can't make sense of. Just quietly swallow exceptions from those so as not to spam
// the user with information about devices unrelated to what was actually changed.
}
}
}
private bool ShouldRunDeviceInBackground(InputDevice device)
{
var runDeviceInBackground =
m_Settings.backgroundBehavior != InputSettings.BackgroundBehavior.ResetAndDisableAllDevices &&
device.canRunInBackground;
// In editor, we may override canRunInBackground depending on the gameViewFocus setting.
#if UNITY_EDITOR
if (runDeviceInBackground)
{
if (m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDevicesRespectGameViewFocus)
runDeviceInBackground = false;
else if (m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.PointersAndKeyboardsRespectGameViewFocus)
runDeviceInBackground = !(device is Pointer || device is Keyboard);
}
#endif
return runDeviceInBackground;
}
internal void OnFocusChanged(bool focus)
{
#if UNITY_EDITOR
SyncAllDevicesWhenEditorIsActivated();
if (!m_Runtime.isInPlayMode)
{
m_HasFocus = focus;
return;
}
#endif
#if UNITY_EDITOR
var gameViewFocus = m_Settings.editorInputBehaviorInPlayMode;
#endif
var runInBackground =
#if UNITY_EDITOR
// In the editor, the player loop will always be run even if the Game View does not have focus. This
// amounts to runInBackground being always true in the editor, regardless of what the setting in
// the Player Settings window is.
//
// If, however, "Game View Focus" is set to "Exactly As In Player", we force code here down the same
// path as in the player.
gameViewFocus != InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView || m_Runtime.runInBackground;
#else
m_Runtime.runInBackground;
#endif
var backgroundBehavior = m_Settings.backgroundBehavior;
if (backgroundBehavior == InputSettings.BackgroundBehavior.IgnoreFocus && runInBackground)
{
// If runInBackground is true, no device changes should happen, even when focus is gained. So early out.
// If runInBackground is false, we still want to sync devices when focus is gained. So we need to continue further.
m_HasFocus = focus;
return;
}
#if UNITY_EDITOR
// Set the current update type while we process the focus changes to make sure we
// feed into the right buffer. No need to do this in the player as it doesn't have
// the editor/player confusion.
m_CurrentUpdate = m_UpdateMask.GetUpdateTypeForPlayer();
#endif
if (!focus)
{
// We only react to loss of focus when we will keep running in the background. If not,
// we'll do nothing and just wait for focus to come back (where we then try to sync all devices).
if (runInBackground)
{
for (var i = 0; i < m_DevicesCount; ++i)
{
// Determine whether to run this device in the background.
var device = m_Devices[i];
if (!device.enabled || ShouldRunDeviceInBackground(device))
continue;
// Disable the device. This will also soft-reset it.
EnableOrDisableDevice(device, false, DeviceDisableScope.TemporaryWhilePlayerIsInBackground);
// In case we invoked a callback that messed with our device array, adjust our index.
var index = m_Devices.IndexOfReference(device, m_DevicesCount);
if (index == -1)
--i;
else
i = index;
}
}
}
else
{
// On focus gain, reenable and sync devices.
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
// Re-enable the device if we disabled it on focus loss. This will also issue a sync.
if (device.disabledWhileInBackground)
EnableOrDisableDevice(device, true, DeviceDisableScope.TemporaryWhilePlayerIsInBackground);
// Try to sync. If it fails and we didn't run in the background, perform
// a reset instead. This is to cope with backends that are unable to sync but
// may still retain state which now may be outdated because the input device may
// have changed state while we weren't running. So at least make the backend flush
// its state (if any).
else if (device.enabled && !runInBackground && !device.RequestSync())
ResetDevice(device);
}
}
#if UNITY_EDITOR
m_CurrentUpdate = InputUpdateType.None;
#endif
// We set this *after* the block above as defaultUpdateType is influenced by the setting.
m_HasFocus = focus;
}
#if UNITY_EDITOR
internal void LeavePlayMode()
{
// Reenable all devices and reset their play mode state.
m_CurrentUpdate = InputUpdate.GetUpdateTypeForPlayer(m_UpdateMask);
InputStateBuffers.SwitchTo(m_StateBuffers, m_CurrentUpdate);
for (var i = 0; i < m_DevicesCount; ++i)
{
var device = m_Devices[i];
if (device.disabledWhileInBackground)
EnableOrDisableDevice(device, true, scope: DeviceDisableScope.TemporaryWhilePlayerIsInBackground);
ResetDevice(device, alsoResetDontResetControls: true);
}
m_CurrentUpdate = default;
}
private void OnPlayerLoopInitialization()
{
if (!gameIsPlaying || // if game is not playing
!InputUpdate.s_LatestUpdateType.IsEditorUpdate() || // or last update was not editor update
!InputUpdate.s_LatestNonEditorUpdateType.IsPlayerUpdate()) // or update before that was not player update
return; // then no need to restore anything
InputUpdate.RestoreStateAfterEditorUpdate();
InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup = latestNonEditorTimeOffsetToRealtimeSinceStartup;
InputStateBuffers.SwitchTo(m_StateBuffers, InputUpdate.s_LatestUpdateType);
}
#endif
internal bool ShouldRunUpdate(InputUpdateType updateType)
{
// We perform a "null" update after domain reloads and on startup to get our devices
// in place before the runtime calls MonoBehaviour callbacks. See InputSystem.RunInitialUpdate().
if (updateType == InputUpdateType.None)
return true;
var mask = m_UpdateMask;
#if UNITY_EDITOR
// If the player isn't running, the only thing we run is editor updates, except if
// explicitly overriden via `runUpdatesInEditMode`.
// NOTE: This means that in edit mode (outside of play mode) we *never* switch to player
// input state. So, any script anywhere will see input state from the editor. If you
// have an [ExecuteInEditMode] MonoBehaviour and it polls the gamepad, for example,
// it will see gamepad inputs going to the editor and respond to them.
if (!gameIsPlaying && updateType != InputUpdateType.Editor && !runPlayerUpdatesInEditMode)
return false;
#endif
return (updateType & mask) != 0;
}
/// <summary>
/// Process input events.
/// </summary>
/// <param name="updateType"></param>
/// <param name="eventBuffer"></param>
/// <remarks>
/// This method is the core workhorse of the input system. It is called from <see cref="UnityEngineInternal.Input.NativeInputSystem"/>.
/// Usually this happens in response to the player loop running and triggering updates at set points. However,
/// updates can also be manually triggered through <see cref="InputSystem.Update"/>.
///
/// The method receives the event buffer used internally by the runtime to collect events.
///
/// Note that update types do *NOT* say what the events we receive are for. The update type only indicates
/// where in the Unity's application loop we got called from. Where the event data goes depends wholly on
/// which buffers we activate in the update and write the event data into.
/// </remarks>
/// <exception cref="InvalidOperationException">Thrown if OnUpdate is called recursively.</exception>
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1809:AvoidExcessiveLocals", Justification = "TODO: Refactor later.")]
private unsafe void OnUpdate(InputUpdateType updateType, ref InputEventBuffer eventBuffer)
{
////TODO: switch from Profiler to CustomSampler API
// NOTE: This is *not* using try/finally as we've seen unreliability in the EndSample()
// execution (and we're not sure where it's coming from).
Profiler.BeginSample("InputUpdate");
if (m_InputEventStream.isOpen)
throw new InvalidOperationException("Already have an event buffer set! Was OnUpdate() called recursively?");
// Restore devices before checking update mask. See InputSystem.RunInitialUpdate().
RestoreDevicesAfterDomainReloadIfNecessary();
// In the editor, we issue a sync on all devices when the editor comes back to the foreground.
#if UNITY_EDITOR
SyncAllDevicesWhenEditorIsActivated();
#endif
if ((updateType & m_UpdateMask) == 0)
{
Profiler.EndSample();
return;
}
WarnAboutDevicesFailingToRecreateAfterDomainReload();
// First update sends out startup analytics.
#if UNITY_ANALYTICS || UNITY_EDITOR
if (!m_HaveSentStartupAnalytics)
{
InputAnalytics.OnStartup(this);
m_HaveSentStartupAnalytics = true;
}
#endif
// Update metrics.
++m_Metrics.totalUpdateCount;
#if UNITY_EDITOR
// If current update is editor update and previous update was non-editor,
// store the time offset so we can restore it right after editor update is complete
if (((updateType & InputUpdateType.Editor) == InputUpdateType.Editor) && (m_CurrentUpdate & InputUpdateType.Editor) == 0)
latestNonEditorTimeOffsetToRealtimeSinceStartup =
InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup;
#endif
// Store current time offset.
InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup = m_Runtime.currentTimeOffsetToRealtimeSinceStartup;
InputStateBuffers.SwitchTo(m_StateBuffers, updateType);
m_CurrentUpdate = updateType;
InputUpdate.OnUpdate(updateType);
var shouldProcessActionTimeouts = updateType.IsPlayerUpdate() && gameIsPlaying;
// See if we're supposed to only take events up to a certain time.
// NOTE: We do not require the events in the queue to be sorted. Instead, we will walk over
// all events in the buffer each time. Note that if there are multiple events for the same
// device, it depends on the producer of these events to queue them in correct order.
// Otherwise, once an event with a newer timestamp has been processed, events coming later
// in the buffer and having older timestamps will get rejected.
var currentTime = updateType == InputUpdateType.Fixed ? m_Runtime.currentTimeForFixedUpdate : m_Runtime.currentTime;
var timesliceEvents = (updateType == InputUpdateType.Fixed || updateType == InputUpdateType.BeforeRender) &&
InputSystem.settings.updateMode == InputSettings.UpdateMode.ProcessEventsInFixedUpdate;
// Figure out if we can just flush the buffer and early out.
var canFlushBuffer =
false
#if UNITY_EDITOR
// If out of focus and runInBackground is off and ExactlyAsInPlayer is on, discard input.
|| (!gameHasFocus && m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView &&
(!m_Runtime.runInBackground ||
m_Settings.backgroundBehavior == InputSettings.BackgroundBehavior.ResetAndDisableAllDevices))
#else
|| (!gameHasFocus && !m_Runtime.runInBackground)
#endif
;
var canEarlyOut =
// Early out if there's no events to process.
eventBuffer.eventCount == 0
|| canFlushBuffer ||
// If we're in the background and not supposed to process events in this update (but somehow
// still ended up here), we're done.
((!gameHasFocus || gameShouldGetInputRegardlessOfFocus) &&
((m_Settings.backgroundBehavior == InputSettings.BackgroundBehavior.ResetAndDisableAllDevices && updateType != InputUpdateType.Editor)
#if UNITY_EDITOR
|| (m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDevicesRespectGameViewFocus && updateType != InputUpdateType.Editor)
|| (m_Settings.backgroundBehavior == InputSettings.BackgroundBehavior.IgnoreFocus && m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView && updateType == InputUpdateType.Editor)
#endif
)
#if UNITY_EDITOR
// When the game is playing and has focus, we never process input in editor updates. All we
// do is just switch to editor state buffers and then exit.
|| (gameIsPlaying && gameHasFocus && updateType == InputUpdateType.Editor)
#endif
);
if (canEarlyOut)
{
// Normally, we process action timeouts after first processing all events. If we have no
// events, we still need to check timeouts.
if (shouldProcessActionTimeouts)
ProcessStateChangeMonitorTimeouts();
Profiler.EndSample();
InvokeAfterUpdateCallback(updateType);
if (canFlushBuffer)
eventBuffer.Reset();
m_CurrentUpdate = default;
return;
}
var processingStartTime = Stopwatch.GetTimestamp();
var totalEventLag = 0.0;
#if UNITY_EDITOR
var isPlaying = gameIsPlaying;
#endif
try
{
m_InputEventStream = new InputEventStream(ref eventBuffer, m_Settings.maxQueuedEventsPerUpdate);
var totalEventBytesProcessed = 0U;
InputEvent* skipEventMergingFor = null;
// Handle events.
while (m_InputEventStream.remainingEventCount > 0)
{
if (m_Settings.maxEventBytesPerUpdate > 0 &&
totalEventBytesProcessed >= m_Settings.maxEventBytesPerUpdate)
{
Debug.LogError(
"Exceeded budget for maximum input event throughput per InputSystem.Update(). Discarding remaining events. "
+ "Increase InputSystem.settings.maxEventBytesPerUpdate or set it to 0 to remove the limit.");
break;
}
InputDevice device = null;
var currentEventReadPtr = m_InputEventStream.currentEventPtr;
Debug.Assert(!currentEventReadPtr->handled, "Event in buffer is already marked as handled");
// In before render updates, we only take state events and only those for devices
// that have before render updates enabled.
if (updateType == InputUpdateType.BeforeRender)
{
while (m_InputEventStream.remainingEventCount > 0)
{
Debug.Assert(!currentEventReadPtr->handled,
"Iterated to event in buffer that is already marked as handled");
device = TryGetDeviceById(currentEventReadPtr->deviceId);
if (device != null && device.updateBeforeRender &&
(currentEventReadPtr->type == StateEvent.Type ||
currentEventReadPtr->type == DeltaStateEvent.Type))
break;
currentEventReadPtr = m_InputEventStream.Advance(leaveEventInBuffer: true);
}
}
if (m_InputEventStream.remainingEventCount == 0)
break;
var currentEventTimeInternal = currentEventReadPtr->internalTime;
var currentEventType = currentEventReadPtr->type;
// In the editor, we discard all input events that occur in-between exiting edit mode and having
// entered play mode as otherwise we'll spill a bunch of UI events that have occurred while the
// UI was sort of neither in this mode nor in that mode. This would usually lead to the game receiving
// an accumulation of spurious inputs right in one of its first updates.
//
// NOTE: There's a chance the solution here will prove inadequate on the long run. We may do things
// here such as throwing partial touches away and then letting the rest of a touch go through.
// Could be that ultimately we need to issue a full reset of all devices at the beginning of
// play mode in the editor.
#if UNITY_EDITOR
if ((currentEventType == StateEvent.Type ||
currentEventType == DeltaStateEvent.Type) &&
(updateType & InputUpdateType.Editor) == 0 &&
InputSystem.s_SystemObject.exitEditModeTime > 0 &&
currentEventTimeInternal >= InputSystem.s_SystemObject.exitEditModeTime &&
(currentEventTimeInternal < InputSystem.s_SystemObject.enterPlayModeTime ||
InputSystem.s_SystemObject.enterPlayModeTime == 0))
{
m_InputEventStream.Advance(false);
continue;
}
#endif
// If we're timeslicing, check if the event time is within limits.
if (timesliceEvents && currentEventTimeInternal >= currentTime)
{
m_InputEventStream.Advance(true);
continue;
}
// If we can't find the device, ignore the event.
if (device == null)
device = TryGetDeviceById(currentEventReadPtr->deviceId);
if (device == null)
{
#if UNITY_EDITOR
////TODO: see if this is a device we haven't created and if so, just ignore
m_Diagnostics?.OnCannotFindDeviceForEvent(new InputEventPtr(currentEventReadPtr));
#endif
m_InputEventStream.Advance(false);
continue;
}
// In the editor, we may need to bump events from editor updates into player updates
// and vice versa.
#if UNITY_EDITOR
if (isPlaying && !gameHasFocus)
{
if (m_Settings.editorInputBehaviorInPlayMode == InputSettings.EditorInputBehaviorInPlayMode
.PointersAndKeyboardsRespectGameViewFocus &&
m_Settings.backgroundBehavior !=
InputSettings.BackgroundBehavior.ResetAndDisableAllDevices)
{
var isPointerOrKeyboard = device is Pointer || device is Keyboard;
if (updateType != InputUpdateType.Editor)
{
// Let everything but pointer and keyboard input through.
// If the event is from a pointer or keyboard, leave it in the buffer so it can be dealt with
// in a subsequent editor update. Otherwise, take it out.
if (isPointerOrKeyboard)
{
m_InputEventStream.Advance(true);
continue;
}
}
else
{
// Let only pointer and keyboard input through.
if (!isPointerOrKeyboard)
{
m_InputEventStream.Advance(true);
continue;
}
}
}
}
#endif
// If device is disabled, we let the event through only in certain cases.
// Removal and configuration change events should always be processed.
if (!device.enabled &&
currentEventType != DeviceRemoveEvent.Type &&
currentEventType != DeviceConfigurationEvent.Type &&
(device.m_DeviceFlags & (InputDevice.DeviceFlags.DisabledInRuntime |
InputDevice.DeviceFlags.DisabledWhileInBackground)) != 0)
{
#if UNITY_EDITOR
// If the device is disabled in the backend, getting events for them
// is something that indicates a problem in the backend so diagnose.
if ((device.m_DeviceFlags & InputDevice.DeviceFlags.DisabledInRuntime) != 0)
m_Diagnostics?.OnEventForDisabledDevice(currentEventReadPtr, device);
#endif
m_InputEventStream.Advance(false);
continue;
}
// Check if the device wants to merge successive events.
if (!settings.disableRedundantEventsMerging && device.hasEventMerger && currentEventReadPtr != skipEventMergingFor)
{
// NOTE: This relies on events in the buffer being consecutive for the same device. This is not
// necessarily the case for events coming in from the background event queue where parallel
// producers may create interleaved input sequences. This will be fixed once we have the
// new buffering scheme for input events working in the native runtime.
var nextEvent = m_InputEventStream.Peek();
// If there is next event after current one.
if ((nextEvent != null)
// And if next event is for the same device.
&& (currentEventReadPtr->deviceId == nextEvent->deviceId)
// And if next event is in the same timeslicing slot.
&& (timesliceEvents ? (nextEvent->internalTime < currentTime) : true)
)
{
// Then try to merge current event into next event.
if (((IEventMerger)device).MergeForward(currentEventReadPtr, nextEvent))
{
// And if succeeded, skip current event, as it was merged into next event.
m_InputEventStream.Advance(false);
continue;
}
// If we can't merge current event with next one for any reason, we assume the next event
// carries crucial entropy (button changed state, phase changed, counter changed, etc).
// Hence semantic meaning for current event is "can't merge current with next because next is different".
// But semantic meaning for next event is "next event carries important information and should be preserved",
// from that point of view next event should not be merged with current nor with _next after next_ event.
//
// For example, given such stream of events:
// Mouse Mouse Mouse Mouse Mouse Mouse Mouse
// Event no1 Event no2 Event no3 Event no4 Event no5 Event no6 Event no7
// Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7
// Pos(10,20) Pos(12,21) Pos(13,23) Pos(14,24) Pos(16,25) Pos(17,27) Pos(18,28)
// Delta(1,1) Delta(2,1) Delta(1,2) Delta(1,1) Delta(2,1) Delta(1,2) Delta(1,1)
// BtnLeft(0) BtnLeft(0) BtnLeft(0) BtnLeft(1) BtnLeft(1) BtnLeft(1) BtnLeft(1)
//
// if we then merge without skipping next event here:
// Mouse Mouse
// Event no3 Event no7
// Time 3 Time 7
// Pos(13,23) Pos(18,28)
// Delta(4,4) Delta(5,5)
// BtnLeft(0) BtnLeft(1)
//
// As you can see, the event no4 containing mouse button press was lost,
// and with it we lose the important information of timestamp of mouse button press.
//
// With skipping merging next event we will get:
// Mouse Mouse Mouse
// Time 3 Time 4 Time 7
// Event no3 Event no4 Event no7
// Pos(13,23) Pos(14,24) Pos(18,28)
// Delta(3,3) Delta(1,1) Delta(4,4)
// BtnLeft(0) BtnLeft(1) BtnLeft(1)
//
// And no4 is preserved, with the exact timestamp of button press.
skipEventMergingFor = nextEvent;
}
}
// Give the device a chance to do something with data before we propagate it to event listeners.
if (device.hasEventPreProcessor)
{
#if UNITY_EDITOR
var eventSizeBeforePreProcessor = currentEventReadPtr->sizeInBytes;
#endif
var shouldProcess = ((IEventPreProcessor)device).PreProcessEvent(currentEventReadPtr);
#if UNITY_EDITOR
if (currentEventReadPtr->sizeInBytes > eventSizeBeforePreProcessor)
throw new AccessViolationException($"'{device}'.PreProcessEvent tries to grow an event from {eventSizeBeforePreProcessor} bytes to {currentEventReadPtr->sizeInBytes} bytes, this will potentially corrupt events after the current event and/or cause out-of-bounds memory access.");
#endif
if (!shouldProcess)
{
// Skip event if PreProcessEvent considers it to be irrelevant.
m_InputEventStream.Advance(false);
continue;
}
}
// Give listeners a shot at the event.
// NOTE: We call listeners also for events where the device is disabled. This is crucial for code
// such as TouchSimulation that disables the originating devices and then uses its events to
// create simulated events from.
if (m_EventListeners.length > 0)
{
DelegateHelpers.InvokeCallbacksSafe(ref m_EventListeners,
new InputEventPtr(currentEventReadPtr), device, "InputSystem.onEvent");
// If a listener marks the event as handled, we don't process it further.
if (currentEventReadPtr->handled)
{
m_InputEventStream.Advance(false);
continue;
}
}
// Update metrics.
if (currentEventTimeInternal <= currentTime)
totalEventLag += currentTime - currentEventTimeInternal;
++m_Metrics.totalEventCount;
m_Metrics.totalEventBytes += (int)currentEventReadPtr->sizeInBytes;
// Process.
switch (currentEventType)
{
case StateEvent.Type:
case DeltaStateEvent.Type:
var eventPtr = new InputEventPtr(currentEventReadPtr);
// Ignore the event if the last state update we received for the device was
// newer than this state event is. We don't allow devices to go back in time.
//
// NOTE: We make an exception here for devices that implement IInputStateCallbackReceiver (such
// as Touchscreen). For devices that dynamically incorporate state it can be hard ensuring
// a global ordering of events as there may be multiple substreams (e.g. each individual touch)
// that are generated in the backend and would require considerable work to ensure monotonically
// increasing timestamps across all such streams.
var deviceIsStateCallbackReceiver = device.hasStateCallbacks;
if (currentEventTimeInternal < device.m_LastUpdateTimeInternal &&
!(deviceIsStateCallbackReceiver && device.stateBlock.format != eventPtr.stateFormat))
{
#if UNITY_EDITOR
m_Diagnostics?.OnEventTimestampOutdated(new InputEventPtr(currentEventReadPtr), device);
#endif
break;
}
// Update the state of the device from the event. If the device is an IInputStateCallbackReceiver,
// let the device handle the event. If not, we do it ourselves.
var haveChangedStateOtherThanNoise = true;
if (deviceIsStateCallbackReceiver)
{
// NOTE: We leave it to the device to make sure the event has the right format. This allows the
// device to handle multiple different incoming formats.
((IInputStateCallbackReceiver)device).OnStateEvent(eventPtr);
}
else
{
// If the state format doesn't match, ignore the event.
if (device.stateBlock.format != eventPtr.stateFormat)
{
#if UNITY_EDITOR
m_Diagnostics?.OnEventFormatMismatch(currentEventReadPtr, device);
#endif
break;
}
haveChangedStateOtherThanNoise = UpdateState(device, eventPtr, updateType);
}
totalEventBytesProcessed += eventPtr.sizeInBytes;
// Update timestamp on device.
// NOTE: We do this here and not in UpdateState() so that InputState.Change() will *NOT* change timestamps.
// Only events should. If running play mode updates in editor, we want to defer to the play mode
// callbacks to set the last update time to avoid dropping events only processed by the editor state.
if (device.m_LastUpdateTimeInternal <= eventPtr.internalTime
#if UNITY_EDITOR
&& !(updateType == InputUpdateType.Editor && runPlayerUpdatesInEditMode)
#endif
)
device.m_LastUpdateTimeInternal = eventPtr.internalTime;
// Make device current. Again, only do this when receiving events.
if (haveChangedStateOtherThanNoise)
device.MakeCurrent();
break;
case TextEvent.Type:
{
var textEventPtr = (TextEvent*)currentEventReadPtr;
if (device is ITextInputReceiver textInputReceiver)
{
var utf32Char = textEventPtr->character;
if (utf32Char >= 0x10000)
{
// Send surrogate pair.
utf32Char -= 0x10000;
var highSurrogate = 0xD800 + ((utf32Char >> 10) & 0x3FF);
var lowSurrogate = 0xDC00 + (utf32Char & 0x3FF);
textInputReceiver.OnTextInput((char)highSurrogate);
textInputReceiver.OnTextInput((char)lowSurrogate);
}
else
{
// Send single, plain character.
textInputReceiver.OnTextInput((char)utf32Char);
}
}
break;
}
case IMECompositionEvent.Type:
{
var imeEventPtr = (IMECompositionEvent*)currentEventReadPtr;
var textInputReceiver = device as ITextInputReceiver;
textInputReceiver?.OnIMECompositionChanged(imeEventPtr->compositionString);
break;
}
case DeviceRemoveEvent.Type:
{
RemoveDevice(device, keepOnListOfAvailableDevices: false);
// If it's a native device with a description, put it on the list of disconnected
// devices.
if (device.native && !device.description.empty)
{
ArrayHelpers.AppendWithCapacity(ref m_DisconnectedDevices,
ref m_DisconnectedDevicesCount, device);
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners,
device, InputDeviceChange.Disconnected, "InputSystem.onDeviceChange");
}
break;
}
case DeviceConfigurationEvent.Type:
device.NotifyConfigurationChanged();
InputActionState.OnDeviceChange(device, InputDeviceChange.ConfigurationChanged);
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceChangeListeners,
device, InputDeviceChange.ConfigurationChanged, "InputSystem.onDeviceChange");
break;
case DeviceResetEvent.Type:
ResetDevice(device,
alsoResetDontResetControls: ((DeviceResetEvent*)currentEventReadPtr)->hardReset);
break;
}
m_InputEventStream.Advance(leaveEventInBuffer: false);
}
m_Metrics.totalEventProcessingTime +=
((double)(Stopwatch.GetTimestamp() - processingStartTime)) / Stopwatch.Frequency;
m_Metrics.totalEventLagTime += totalEventLag;
m_InputEventStream.Close(ref eventBuffer);
}
catch (Exception)
{
// We need to restore m_InputEventStream to a sound state
// to avoid failing recursive OnUpdate check next frame.
m_InputEventStream.CleanUpAfterException();
throw;
}
if (shouldProcessActionTimeouts)
ProcessStateChangeMonitorTimeouts();
Profiler.EndSample();
////FIXME: need to ensure that if someone calls QueueEvent() from an onAfterUpdate callback, we don't end up with a
//// mess in the event buffer
//// same goes for events that someone may queue from a change monitor callback
InvokeAfterUpdateCallback(updateType);
m_CurrentUpdate = default;
}
private void InvokeAfterUpdateCallback(InputUpdateType updateType)
{
// don't invoke the after update callback if this is an editor update and the game is playing. We
// skip event processing when playing in the editor and the game has focus, which means that any
// handlers for this delegate that query input state during this update will get no values.
if (updateType == InputUpdateType.Editor && gameIsPlaying)
return;
DelegateHelpers.InvokeCallbacksSafe(ref m_AfterUpdateListeners,
"InputSystem.onAfterUpdate");
}
internal unsafe bool UpdateState(InputDevice device, InputEvent* eventPtr, InputUpdateType updateType)
{
Debug.Assert(eventPtr != null, "Received NULL event ptr");
var stateBlockOfDevice = device.m_StateBlock;
var stateBlockSizeOfDevice = stateBlockOfDevice.sizeInBits / 8; // Always byte-aligned; avoid calling alignedSizeInBytes.
var offsetInDeviceStateToCopyTo = 0u;
uint sizeOfStateToCopy;
uint receivedStateSize;
byte* ptrToReceivedState;
FourCC receivedStateFormat;
// Grab state data from event and decide where to copy to and how much to copy.
if (eventPtr->type == StateEvent.Type)
{
var stateEventPtr = (StateEvent*)eventPtr;
receivedStateFormat = stateEventPtr->stateFormat;
receivedStateSize = stateEventPtr->stateSizeInBytes;
ptrToReceivedState = (byte*)stateEventPtr->state;
// Ignore extra state at end of event.
sizeOfStateToCopy = receivedStateSize;
if (sizeOfStateToCopy > stateBlockSizeOfDevice)
sizeOfStateToCopy = stateBlockSizeOfDevice;
}
else
{
Debug.Assert(eventPtr->type == DeltaStateEvent.Type, "Given event must either be a StateEvent or a DeltaStateEvent");
var deltaEventPtr = (DeltaStateEvent*)eventPtr;
receivedStateFormat = deltaEventPtr->stateFormat;
receivedStateSize = deltaEventPtr->deltaStateSizeInBytes;
ptrToReceivedState = (byte*)deltaEventPtr->deltaState;
offsetInDeviceStateToCopyTo = deltaEventPtr->stateOffset;
// Ignore extra state at end of event.
sizeOfStateToCopy = receivedStateSize;
if (offsetInDeviceStateToCopyTo + sizeOfStateToCopy > stateBlockSizeOfDevice)
{
if (offsetInDeviceStateToCopyTo >= stateBlockSizeOfDevice)
return false; // Entire delta state is out of range.
sizeOfStateToCopy = stateBlockSizeOfDevice - offsetInDeviceStateToCopyTo;
}
}
Debug.Assert(device.m_StateBlock.format == receivedStateFormat, "Received state format does not match format of device");
// Write state.
return UpdateState(device, updateType, ptrToReceivedState, offsetInDeviceStateToCopyTo,
sizeOfStateToCopy, eventPtr->internalTime, eventPtr);
}
/// <summary>
/// This method is the workhorse for updating input state in the system. It runs all the logic of incorporating
/// new state into devices and triggering whatever change monitors are attached to the state memory that gets
/// touched.
/// </summary>
/// <remarks>
/// This method can be invoked from outside the event processing loop and the given data does not have to come
/// from an event.
///
/// This method does NOT respect <see cref="IInputStateCallbackReceiver"/>. This means that the device will
/// NOT get a shot at intervening in the state write.
/// </remarks>
/// <param name="device">Device to update state on. <paramref name="stateOffsetInDevice"/> is relative to device's
/// starting offset in memory.</param>
/// <param name="eventPtr">Pointer to state event from which the state change was initiated. Null if the state
/// change is not coming from an event.</param>
internal unsafe bool UpdateState(InputDevice device, InputUpdateType updateType,
void* statePtr, uint stateOffsetInDevice, uint stateSize, double internalTime, InputEventPtr eventPtr = default)
{
var deviceIndex = device.m_DeviceIndex;
ref var stateBlockOfDevice = ref device.m_StateBlock;
////TODO: limit stateSize and StateOffset by the device's state memory
var deviceBuffer = (byte*)InputStateBuffers.GetFrontBufferForDevice(deviceIndex);
// If state monitors need to be re-sorted, do it now.
// NOTE: This must happen with the monitors in non-signalled state!
SortStateChangeMonitorsIfNecessary(deviceIndex);
// Before we update state, let change monitors compare the old and the new state.
// We do this instead of first updating the front buffer and then comparing to the
// back buffer as that would require a buffer flip for each state change in order
// for the monitors to work reliably. By comparing the *event* data to the current
// state, we can have multiple state events in the same frame yet still get reliable
// change notifications.
var haveSignalledMonitors =
ProcessStateChangeMonitors(deviceIndex, statePtr,
deviceBuffer + stateBlockOfDevice.byteOffset,
stateSize, stateOffsetInDevice);
var deviceStateOffset = device.m_StateBlock.byteOffset + stateOffsetInDevice;
var deviceStatePtr = deviceBuffer + deviceStateOffset;
////REVIEW: Should we do this only for events but not for InputState.Change()?
// If noise filtering on .current is turned on and the device may have noise,
// determine if the event carries signal or not.
var noiseMask = device.noisy
? (byte*)InputStateBuffers.s_NoiseMaskBuffer + deviceStateOffset
: null;
// Compare the current state of the device to the newly received state but overlay
// the comparison by the noise mask.
var makeDeviceCurrent = !MemoryHelpers.MemCmpBitRegion(deviceStatePtr, statePtr,
0, stateSize * 8, mask: noiseMask);
// Buffer flip.
var flipped = FlipBuffersForDeviceIfNecessary(device, updateType);
// Now write the state.
#if UNITY_EDITOR
if (updateType == InputUpdateType.Editor)
{
WriteStateChange(m_StateBuffers.m_EditorStateBuffers, deviceIndex, ref stateBlockOfDevice, stateOffsetInDevice,
statePtr, stateSize, flipped);
}
else
#endif
{
WriteStateChange(m_StateBuffers.m_PlayerStateBuffers, deviceIndex, ref stateBlockOfDevice,
stateOffsetInDevice, statePtr, stateSize, flipped);
}
// Notify listeners.
DelegateHelpers.InvokeCallbacksSafe(ref m_DeviceStateChangeListeners,
device, eventPtr, "InputSystem.onDeviceStateChange");
// Now that we've committed the new state to memory, if any of the change
// monitors fired, let the associated actions know.
if (haveSignalledMonitors)
FireStateChangeNotifications(deviceIndex, internalTime, eventPtr);
return makeDeviceCurrent;
}
private static unsafe void WriteStateChange(InputStateBuffers.DoubleBuffers buffers, int deviceIndex,
ref InputStateBlock deviceStateBlock, uint stateOffsetInDevice, void* statePtr, uint stateSizeInBytes, bool flippedBuffers)
{
var frontBuffer = buffers.GetFrontBuffer(deviceIndex);
Debug.Assert(frontBuffer != null);
// If we're updating less than the full state, we need to preserve the parts we are not updating.
// Instead of trying to optimize here and only copy what we really need, we just go and copy the
// entire state of the device over.
//
// NOTE: This copying must only happen once, right after a buffer flip. Otherwise we may copy old,
// stale input state from the back buffer over state that has already been updated with newer
// data.
var deviceStateSize = deviceStateBlock.sizeInBits / 8; // Always byte-aligned; avoid calling alignedSizeInBytes.
if (flippedBuffers && deviceStateSize != stateSizeInBytes)
{
var backBuffer = buffers.GetBackBuffer(deviceIndex);
Debug.Assert(backBuffer != null);
UnsafeUtility.MemCpy(
(byte*)frontBuffer + deviceStateBlock.byteOffset,
(byte*)backBuffer + deviceStateBlock.byteOffset,
deviceStateSize);
}
UnsafeUtility.MemCpy((byte*)frontBuffer + deviceStateBlock.byteOffset + stateOffsetInDevice, statePtr,
stateSizeInBytes);
}
// Flip front and back buffer for device, if necessary. May flip buffers for more than just
// the given update type.
// Returns true if there was a buffer flip.
private bool FlipBuffersForDeviceIfNecessary(InputDevice device, InputUpdateType updateType)
{
if (updateType == InputUpdateType.BeforeRender)
{
////REVIEW: I think this is wrong; if we haven't flipped in the current dynamic or fixed update, we should do so now
// We never flip buffers for before render. Instead, we already write
// into the front buffer.
return false;
}
#if UNITY_EDITOR
////REVIEW: should this use the editor update ticks as quasi-frame-boundaries?
// Updates go to the editor only if the game isn't playing or does not have focus.
// Otherwise we fall through to the logic that flips for the *next* dynamic and
// fixed updates.
if (updateType == InputUpdateType.Editor)
{
////REVIEW: This isn't right. The editor does have update ticks which constitute the equivalent of player frames.
// The editor doesn't really have a concept of frame-to-frame operation the
// same way the player does. So we simply flip buffers on a device whenever
// a new state event for it comes in.
m_StateBuffers.m_EditorStateBuffers.SwapBuffers(device.m_DeviceIndex);
return true;
}
#endif
// Flip buffers if we haven't already for this frame.
if (device.m_CurrentUpdateStepCount != InputUpdate.s_UpdateStepCount)
{
m_StateBuffers.m_PlayerStateBuffers.SwapBuffers(device.m_DeviceIndex);
device.m_CurrentUpdateStepCount = InputUpdate.s_UpdateStepCount;
return true;
}
return false;
}
// Domain reload survival logic. Also used for pushing and popping input system
// state for testing.
// Stuff everything that we want to survive a domain reload into
// a m_SerializedState.
#if UNITY_EDITOR || DEVELOPMENT_BUILD
[Serializable]
internal struct DeviceState
{
// Preserving InputDevices is somewhat tricky business. Serializing
// them in full would involve pretty nasty work. We have the restriction,
// however, that everything needs to be created from layouts (it partly
// exists for the sake of reload survivability), so we should be able to
// just go and recreate the device from the layout. This also has the
// advantage that if the layout changes between reloads, the change
// automatically takes effect.
public string name;
public string layout;
public string variants;
public string[] usages;
public int deviceId;
public int participantId;
public InputDevice.DeviceFlags flags;
public InputDeviceDescription description;
public void Restore(InputDevice device)
{
var usageCount = usages.LengthSafe();
for (var i = 0; i < usageCount; ++i)
device.AddDeviceUsage(new InternedString(usages[i]));
device.m_ParticipantId = participantId;
}
}
/// <summary>
/// State we take across domain reloads.
/// </summary>
/// <remarks>
/// Most of the state we re-recreate in-between reloads and do not store
/// in this structure. In particular, we do not preserve anything from
/// the various RegisterXXX().
///
/// WARNING
///
/// Making changes to serialized data format will likely to break upgrading projects from older versions.
/// That is until you restart the editor, then we recreate everything from clean state.
/// </remarks>
[Serializable]
internal struct SerializedState
{
public int layoutRegistrationVersion;
public float pollingFrequency;
public DeviceState[] devices;
public AvailableDevice[] availableDevices;
public InputStateBuffers buffers;
public InputUpdate.SerializedState updateState;
public InputUpdateType updateMask;
public InputMetrics metrics;
public InputSettings settings;
#if UNITY_ANALYTICS || UNITY_EDITOR
public bool haveSentStartupAnalytics;
#endif
}
internal SerializedState SaveState()
{
// Devices.
var deviceCount = m_DevicesCount;
var deviceArray = new DeviceState[deviceCount];
for (var i = 0; i < deviceCount; ++i)
{
var device = m_Devices[i];
string[] usages = null;
if (device.usages.Count > 0)
usages = device.usages.Select(x => x.ToString()).ToArray();
var deviceState = new DeviceState
{
name = device.name,
layout = device.layout,
variants = device.variants,
deviceId = device.deviceId,
participantId = device.m_ParticipantId,
usages = usages,
description = device.m_Description,
flags = device.m_DeviceFlags
};
deviceArray[i] = deviceState;
}
return new SerializedState
{
layoutRegistrationVersion = m_LayoutRegistrationVersion,
pollingFrequency = m_PollingFrequency,
devices = deviceArray,
availableDevices = m_AvailableDevices?.Take(m_AvailableDeviceCount).ToArray(),
buffers = m_StateBuffers,
updateState = InputUpdate.Save(),
updateMask = m_UpdateMask,
metrics = m_Metrics,
settings = m_Settings,
#if UNITY_ANALYTICS || UNITY_EDITOR
haveSentStartupAnalytics = m_HaveSentStartupAnalytics,
#endif
};
}
internal void RestoreStateWithoutDevices(SerializedState state)
{
m_StateBuffers = state.buffers;
m_LayoutRegistrationVersion = state.layoutRegistrationVersion + 1;
updateMask = state.updateMask;
m_Metrics = state.metrics;
m_PollingFrequency = state.pollingFrequency;
if (m_Settings != null)
Object.DestroyImmediate(m_Settings);
m_Settings = state.settings;
#if UNITY_ANALYTICS || UNITY_EDITOR
m_HaveSentStartupAnalytics = state.haveSentStartupAnalytics;
#endif
////REVIEW: instead of accessing globals here, we could move this to when we re-create devices
// Update state.
InputUpdate.Restore(state.updateState);
}
// If these are set, we clear them out on the first input update.
internal DeviceState[] m_SavedDeviceStates;
internal AvailableDevice[] m_SavedAvailableDevices;
/// <summary>
/// Recreate devices based on the devices we had before a domain reload.
/// </summary>
/// <remarks>
/// Note that device indices may change between domain reloads.
///
/// We recreate devices using the layout information as it exists now as opposed to
/// as it existed before the domain reload. This means we'll be picking up any changes that
/// have happened to layouts as part of the reload (including layouts having been removed
/// entirely).
/// </remarks>
internal void RestoreDevicesAfterDomainReload()
{
Profiler.BeginSample("InputManager.RestoreDevicesAfterDomainReload");
using (InputDeviceBuilder.Ref())
{
DeviceState[] retainedDeviceStates = null;
var deviceStates = m_SavedDeviceStates;
var deviceCount = m_SavedDeviceStates.LengthSafe();
m_SavedDeviceStates = null; // Prevent layout matcher registering themselves on the fly from picking anything off this list.
for (var i = 0; i < deviceCount; ++i)
{
ref var deviceState = ref deviceStates[i];
var device = TryGetDeviceById(deviceState.deviceId);
if (device != null)
continue;
var layout = TryFindMatchingControlLayout(ref deviceState.description,
deviceState.deviceId);
if (layout.IsEmpty())
{
var previousLayout = new InternedString(deviceState.layout);
if (m_Layouts.HasLayout(previousLayout))
layout = previousLayout;
}
if (layout.IsEmpty() || !RestoreDeviceFromSavedState(ref deviceState, layout))
ArrayHelpers.Append(ref retainedDeviceStates, deviceState);
}
// See if we can make sense of an available device now that we couldn't make sense of
// before. This can be the case if there's new layout information that wasn't available
// before.
if (m_SavedAvailableDevices != null)
{
m_AvailableDevices = m_SavedAvailableDevices;
m_AvailableDeviceCount = m_SavedAvailableDevices.LengthSafe();
for (var i = 0; i < m_AvailableDeviceCount; ++i)
{
var device = TryGetDeviceById(m_AvailableDevices[i].deviceId);
if (device != null)
continue;
if (m_AvailableDevices[i].isRemoved)
continue;
var layout = TryFindMatchingControlLayout(ref m_AvailableDevices[i].description,
m_AvailableDevices[i].deviceId);
if (!layout.IsEmpty())
{
try
{
AddDevice(layout, m_AvailableDevices[i].deviceId,
deviceDescription: m_AvailableDevices[i].description,
deviceFlags: m_AvailableDevices[i].isNative ? InputDevice.DeviceFlags.Native : 0);
}
catch (Exception)
{
// Just ignore. Simply means we still can't really turn the device into something useful.
}
}
}
}
// Done. Discard saved arrays.
m_SavedDeviceStates = retainedDeviceStates;
m_SavedAvailableDevices = null;
}
Profiler.EndSample();
}
// We have two general types of devices we need to care about when recreating devices
// after domain reloads:
//
// A) device with InputDeviceDescription
// B) device created directly from specific layout
//
// A) should go through the normal matching process whereas B) should get recreated with
// layout of same name (if still available).
//
// So we kick device recreation off from two points:
//
// 1) From RegisterControlLayoutMatcher to catch A)
// 2) From RegisterControlLayout to catch B)
//
// Additionally, we have the complication that a layout a device was using was something
// dynamically registered from onFindLayoutForDevice. We don't do anything special about that.
// The first full input update will flush out the list of saved device states and at that
// point, any onFindLayoutForDevice hooks simply have to be in place. If they are, devices
// will get recreated appropriately.
//
// It would be much simpler to recreate all devices as the first thing in the first full input
// update but that would mean that devices would become available only very late. They would
// not, for example, be available when MonoBehaviour.Start methods are invoked.
private bool RestoreDeviceFromSavedState(ref DeviceState deviceState, InternedString layout)
{
// We assign the same device IDs here to newly created devices that they had
// before the domain reload. This is safe as device ID allocation is under the
// control of the runtime and not expected to be affected by a domain reload.
InputDevice device;
try
{
device = AddDevice(layout,
deviceDescription: deviceState.description,
deviceId: deviceState.deviceId,
deviceName: deviceState.name,
deviceFlags: deviceState.flags,
variants: new InternedString(deviceState.variants));
}
catch (Exception exception)
{
Debug.LogError(
$"Could not recreate input device '{deviceState.description}' with layout '{deviceState.layout}' and variants '{deviceState.variants}' after domain reload");
Debug.LogException(exception);
return true; // Don't try again.
}
deviceState.Restore(device);
return true;
}
#endif // UNITY_EDITOR || DEVELOPMENT_BUILD
}
}