Firstborn/Library/PackageCache/com.unity.inputsystem@1.4.4/InputSystem/Controls/InputControl.cs
Schaken-Mods b486678290 Library -Artifacts
Library -Artifacts
2023-03-28 12:24:16 -05:00

1215 lines
55 KiB
C#

using System;
using System.Collections.Generic;
using System.Diagnostics;
using UnityEngine.InputSystem.Controls;
using UnityEngine.InputSystem.LowLevel;
using UnityEngine.InputSystem.Utilities;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine.InputSystem.Layouts;
////REVIEW: should EvaluateMagnitude() be called EvaluateActuation() or something similar?
////REVIEW: as soon as we gain the ability to have blittable type constraints, InputControl<TValue> should be constrained such
////REVIEW: Reading and writing is asymmetric. Writing does not involve processors, reading does.
////REVIEW: While the arrays used by controls are already nicely centralized on InputDevice, InputControls still
//// hold a bunch of reference data that requires separate scanning. Can we move *all* reference data to arrays
//// on InputDevice and make InputControls reference-free? Most challenging thing probably is getting rid of
//// the InputDevice reference itself.
////REVIEW: how do we do stuff like smoothing over time?
////TODO: allow easier access to the default state such that you can easily create a state event containing only default state
////TODO: come up with a way where we do ReadValue on the most common forms/setups of controls and not have any virtual method dispatch but
//// rather go with minimal overhead directly to reading out memory
//// (this should at least cover FLT, single BIT, and INT controls; and should be able to apply the common transformations
//// as per AxisControl)
namespace UnityEngine.InputSystem
{
/// <summary>
/// A typed and named source of input values in a hierarchy of controls.
/// </summary>
/// <remarks>
/// Controls can have children which in turn may have children. At the root of the child
/// hierarchy is always an <see cref="InputDevice"/> (which themselves are InputControls).
///
/// Controls can be looked up by their <see cref="path"/> (see <see cref="InputControlPath.TryFindControl"/>).
///
/// Each control must have a unique <see cref="name"/> within the <see cref="children"/> of
/// its <see cref="parent"/>. Multiple names can be assigned to controls using aliases (see
/// <see cref="aliases"/>). Name lookup is case-insensitive.
///
/// For display purposes, a control may have a separate <see cref="displayName"/>. This name
/// will usually correspond to what the control is caused on the actual underlying hardware.
/// For example, on an Xbox gamepad, the control with the name "buttonSouth" will have a display
/// name of "A". Controls that have very long display names may also have a <see cref="shortDisplayName"/>.
/// This is the case for the "Left Button" on the <see cref="Mouse"/>, for example, which is
/// commonly abbreviated "LMB".
///
/// In addition to names, a control may have usages associated with it (see <see cref="usages"/>).
/// A usage indicates how a control is meant to be used. For example, a button can be assigned
/// the "PrimaryAction" usage to indicate it is the primary action button the device. Within a
/// device, usages have to be unique. See <see cref="CommonUsages"/> for a list of standardized usages.
///
/// Controls do not actually store values. Instead, every control receives an <see cref="InputStateBlock"/>
/// which, after the control's device has been added to the system, is used to read out values
/// from the device's backing store. This backing store is referred to as "state" in the API
/// as opposed to "values" which represent the data resulting from reading state. The format that
/// each control stores state in is specific to the control. It can vary not only between controls
/// of different types but also between controls of the same type. An <see cref="AxisControl"/>,
/// for example, can be stored as a float or as a byte or in a number of other formats. <see cref="stateBlock"/>
/// identifies both where the control stores its state as well as the format it stores it in.
///
/// Controls are generally not created directly but are created internally by the input system
/// from data known as "layouts" (see <see cref="InputControlLayout"/>). Each such layout describes
/// the setup of a specific hierarchy of controls. The system internally maintains a registry of
/// layouts and produces devices and controls from them as needed. The layout that a control has
/// been created from can be queried using <see cref="layout"/>. For most purposes, the intricacies
/// of the control layout mechanisms can be ignored and it is sufficient to know the names of a
/// small set of common device layouts such as "Keyboard", "Mouse", "Gamepad", and "Touchscreen".
///
/// Each control has a single, fixed value type. The type can be queried at runtime using
/// <see cref="valueType"/>. Most types of controls are derived from <see cref="InputControl{TValue}"/>
/// which has APIs specific to the type of value of the control (e.g. <see cref="InputControl{TValue}.ReadValue()"/>.
///
/// The following example demonstrates various common operations performed on input controls:
///
/// <example>
/// <code>
/// // Look up dpad/up control on current gamepad.
/// var dpadUpControl = Gamepad.current["dpad/up"];
///
/// // Look up the back button on the current gamepad.
/// var backButton = Gamepad.current["{Back}"];
///
/// // Look up all dpad/up controls on all gamepads in the system.
/// using (var controls = InputSystem.FindControls("&lt;Gamepad&gt;/dpad/up"))
/// Debug.Log($"Found {controls.Count} controls");
///
/// // Display the value of all controls on the current gamepad.
/// foreach (var control in Gamepad.current.allControls)
/// Debug.Log(controls.ReadValueAsObject());
///
/// // Track the value of the left stick on the current gamepad over time.
/// var leftStickHistory = new InputStateHistory(Gamepad.current.leftStick);
/// leftStickHistory.Enable();
/// </code>
/// </example>
/// <example>
/// </example>
/// </remarks>
/// <see cref="InputControl{TValue}"/>
/// <seealso cref="InputDevice"/>
/// <seealso cref="InputControlPath"/>
/// <seealso cref="InputStateBlock"/>
[DebuggerDisplay("{DebuggerDisplay(),nq}")]
public abstract class InputControl
{
/// <summary>
/// The name of the control, i.e. the final name part in its path.
/// </summary>
/// <remarks>
/// Names of controls must be unique within the context of their parent.
///
/// Note that this is the name of the control as assigned internally (like "buttonSouth")
/// and not necessarily a good display name. Use <see cref="displayName"/> for
/// getting more readable names for display purposes (where available).
///
/// Lookup of names is case-insensitive.
///
/// This is set from the name of the control in the layout.
/// </remarks>
/// <seealso cref="path"/>
/// <seealso cref="aliases"/>
/// <seealso cref="InputControlAttribute.name"/>
/// <seealso cref="InputControlLayout.ControlItem.name"/>
public string name => m_Name;
////TODO: protect against empty strings
/// <summary>
/// The text to display as the name of the control.
/// </summary>
/// <remarks>
/// Note that the display name of a control may change over time. For example, when changing
/// from a QWERTY keyboard layout to an AZERTY keyboard layout, the "q" key (which will keep
/// that <see cref="name"/>) will change its display name from "q" to "a".
///
/// By default, a control's display name will come from its layout. If it is not assigned
/// a display name there, the display name will default to <see cref="name"/>. However, specific
/// controls may override this behavior. <see cref="KeyControl"/>, for example, will set the
/// display name to the actual key name corresponding to the current keyboard layout.
///
/// For nested controls, the display name will include the display names of all parent controls,
/// i.e. the display name will fully identify the control on the device. For example, the display
/// name for the left D-Pad button on a gamepad is "D-Pad Left" and not just "Left".
/// </remarks>
/// <seealso cref="shortDisplayName"/>
public string displayName
{
get
{
RefreshConfigurationIfNeeded();
if (m_DisplayName != null)
return m_DisplayName;
if (m_DisplayNameFromLayout != null)
return m_DisplayNameFromLayout;
return m_Name;
}
// This is not public as a domain reload will wipe the change. This should really
// come from the control itself *if* the control wants to have a custom display name
// not driven by its layout.
protected set => m_DisplayName = value;
}
/// <summary>
/// An alternate, abbreviated <see cref="displayName"/> (for example "LMB" instead of "Left Button").
/// </summary>
/// <remarks>
/// If the control has no abbreviated version, this will be null. Note that this behavior is different
/// from <see cref="displayName"/> which will fall back to <see cref="name"/> if no display name has
/// been assigned to the control.
///
/// For nested controls, the short display name will include the short display names of all parent controls,
/// that is, the display name will fully identify the control on the device. For example, the display
/// name for the left D-Pad button on a gamepad is "D-Pad \u2190" and not just "\u2190". Note that if a parent
/// control has no short name, its long name will be used instead.
/// </remarks>
/// <seealso cref="displayName"/>
public string shortDisplayName
{
get
{
RefreshConfigurationIfNeeded();
if (m_ShortDisplayName != null)
return m_ShortDisplayName;
if (m_ShortDisplayNameFromLayout != null)
return m_ShortDisplayNameFromLayout;
return null;
}
protected set => m_ShortDisplayName = value;
}
/// <summary>
/// Full path all the way from the root.
/// </summary>
/// <remarks>
/// This will always be the "effective" path of the control, i.e. it will not contain
/// elements such as usages (<c>"{Back}"</c>) and other elements that can be part of
/// control paths used for matching. Instead, this property will always be a simple
/// linear ordering of names leading from the device at the top to the control with each
/// element being separated by a forward slash (<c>/</c>).
///
/// Allocates on first hit. Paths are not created until someone asks for them.
///
/// <example>
/// Example: "/gamepad/leftStick/x"
/// </example>
/// </remarks>
/// <seealso cref="InputControlPath"/>
public string path
{
get
{
if (m_Path == null)
m_Path = InputControlPath.Combine(m_Parent, m_Name);
return m_Path;
}
}
/// <summary>
/// Layout the control is based on.
/// </summary>
/// <remarks>
/// This is the layout name rather than a reference to an <see cref="InputControlLayout"/> as
/// we only create layout instances during device creation and treat them
/// as temporaries in general so as to not waste heap space during normal operation.
/// </remarks>
public string layout => m_Layout;
/// <summary>
/// Semicolon-separated list of variants of the control layout or "default".
/// </summary>
/// <example>
/// "Lefty" when using the "Lefty" gamepad layout.
/// </example>
public string variants => m_Variants;
/// <summary>
/// The device that this control is a part of.
/// </summary>
/// <remarks>
/// This is the root of the control hierarchy. For the device at the root, this
/// will point to itself.
/// </remarks>
/// <seealso cref="InputDevice.allControls"/>
public InputDevice device => m_Device;
/// <summary>
/// The immediate parent of the control or null if the control has no parent
/// (which, once fully constructed) will only be the case for InputDevices).
/// </summary>
/// <seealso cref="children"/>
public InputControl parent => m_Parent;
/// <summary>
/// List of immediate children.
/// </summary>
/// <remarks>
/// Does not allocate.
/// </remarks>
/// <seealso cref="parent"/>
public ReadOnlyArray<InputControl> children =>
new ReadOnlyArray<InputControl>(m_Device.m_ChildrenForEachControl, m_ChildStartIndex, m_ChildCount);
/// <summary>
/// List of usage tags associated with the control.
/// </summary>
/// <remarks>
/// Usages apply "semantics" to a control. Whereas the name of a control identifies a particular
/// "endpoint" within the control hierarchy, the usages of a control identify particular roles
/// of specific control. A simple example is <see cref="CommonUsages.Back"/> which identifies a
/// control generally used to move backwards in the navigation history of a UI. On a keyboard,
/// it is the escape key that generally fulfills this role whereas on a gamepad, it is generally
/// the "B" / "Circle" button. Some devices may not have a control that generally fulfills this
/// function and thus may not have any control with the "Back" usage.
///
/// By looking up controls by usage rather than by name, it is possible to locate the correct
/// control to use for certain standardized situation without having to know the particulars of
/// the device or platform.
///
/// <example>
/// <code>
/// // Bind to any control which is tagged with the "Back" usage on any device.
/// var backAction = new InputAction(binding: "*/{Back}");
/// </code>
/// </example>
///
/// Note that usages on devices work slightly differently than usages of controls on devices.
/// They are also queried through this property but unlike the usages of controls, the set of
/// usages of a device can be changed dynamically as the role of the device changes. For details,
/// see <see cref="InputSystem.SetDeviceUsage(InputDevice,string)"/>. Controls, on the other hand,
/// can currently only be assigned usages through layouts (<see cref="InputControlAttribute.usage"/>
/// or <see cref="InputControlAttribute.usages"/>).
/// </remarks>
/// <seealso cref="InputControlAttribute.usage"/>
/// <seealso cref="InputControlAttribute.usages"/>
/// <seealso cref="InputSystem.SetDeviceUsage(InputDevice,string)"/>
/// <seealso cref="InputSystem.AddDeviceUsage(InputDevice,string)"/>
/// <seealso cref="InputSystem.RemoveDeviceUsage(InputDevice,string)"/>
/// <seealso cref="CommonUsages"/>
public ReadOnlyArray<InternedString> usages =>
new ReadOnlyArray<InternedString>(m_Device.m_UsagesForEachControl, m_UsageStartIndex, m_UsageCount);
// List of alternate names for the control.
public ReadOnlyArray<InternedString> aliases =>
new ReadOnlyArray<InternedString>(m_Device.m_AliasesForEachControl, m_AliasStartIndex, m_AliasCount);
// Information about where the control stores its state.
public InputStateBlock stateBlock => m_StateBlock;
/// <summary>
/// Whether the control is considered noisy.
/// </summary>
/// <value>True if the control produces noisy input.</value>
/// <remarks>
/// A control is considered "noisy" if it produces different values without necessarily requiring user
/// interaction. A good example are sensors (see <see cref="Sensor"/>). For example, the PS4 controller
/// which has a gyroscope sensor built into the device. Whereas sticks and buttons on the device require
/// user interaction to produce non-default values, the gyro will produce varying values even if the
/// device just sits there without user interaction.
///
/// The value of this property is determined by the layout (<see cref="InputControlLayout"/>) that the
/// control has been built from.
///
/// Note that for devices (<see cref="InputDevice"/>) this property is true if any control on the device
/// is marked as noisy.
///
/// The primary effect of being noise is on <see cref="InputDevice.MakeCurrent"/> and
/// on interactive rebinding (see <see cref="InputActionRebindingExtensions.RebindingOperation"/>).
/// However, being noisy also affects automatic resetting of controls that happens when the application
/// loses focus. While other controls are reset to their default value (except if <c>Application.runInBackground</c>
/// is true and the device the control belongs to is marked as <see cref="InputDevice.canRunInBackground"/>),
/// noisy controls will not be reset but rather remain at their current value. This is based on the assumption
/// that noisy controls most often represent sensor values and snapping the last sampling value back to default
/// will usually have undesirable effects on an application's simulation logic.
/// </remarks>
/// <seealso cref="InputControlLayout.ControlItem.isNoisy"/>
/// <seealso cref="InputControlAttribute.noisy"/>
public bool noisy
{
get => (m_ControlFlags & ControlFlags.IsNoisy) != 0;
internal set
{
if (value)
{
m_ControlFlags |= ControlFlags.IsNoisy;
// Making a control noisy makes all its children noisy.
var list = children;
for (var i = 0; i < list.Count; ++i)
{
if (null != list[i])
list[i].noisy = true;
}
}
else
m_ControlFlags &= ~ControlFlags.IsNoisy;
}
}
/// <summary>
/// Whether the control is considered synthetic.
/// </summary>
/// <value>True if the control does not represent an actual physical control on the device.</value>
/// <remarks>
/// A control is considered "synthetic" if it does not correspond to an actual, physical control on the
/// device. An example for this is <see cref="Keyboard.anyKey"/> or the up/down/left/right buttons added
/// by <see cref="StickControl"/>.
///
/// The value of this property is determined by the layout (<see cref="InputControlLayout"/>) that the
/// control has been built from.
///
/// The primary effect of being synthetic is in interactive rebinding (see
/// <see cref="InputActionRebindingExtensions.RebindingOperation"/>) where non-synthetic
/// controls will be favored over synthetic ones. This means, for example, that if both
/// <c>"&lt;Gamepad&gt;/leftStick/x"</c> and <c>"&lt;Gamepad&gt;/leftStick/left"</c> are
/// suitable picks, <c>"&lt;Gamepad&gt;/leftStick/x"</c> will be favored as it represents
/// input from an actual physical control whereas <c>"&lt;Gamepad&gt;/leftStick/left"</c>
/// represents input from a made-up control. If, however, the "left" button is the only
/// viable pick, it will be accepted.
/// </remarks>
/// <seealso cref="InputControlLayout.ControlItem.isSynthetic"/>
/// <seealso cref="InputControlAttribute.synthetic"/>
public bool synthetic
{
get => (m_ControlFlags & ControlFlags.IsSynthetic) != 0;
internal set
{
if (value)
m_ControlFlags |= ControlFlags.IsSynthetic;
else
m_ControlFlags &= ~ControlFlags.IsSynthetic;
}
}
/// <summary>
/// Fetch a control from the control's hierarchy by name.
/// </summary>
/// <remarks>
/// Note that path matching is case-insensitive.
/// </remarks>
/// <example>
/// <code>
/// gamepad["leftStick"] // Returns Gamepad.leftStick
/// gamepad["leftStick/x"] // Returns Gamepad.leftStick.x
/// gamepad["{PrimaryAction}"] // Returns the control with PrimaryAction usage, that is, Gamepad.aButton
/// </code>
/// </example>
/// <exception cref="KeyNotFoundException"><paramref name="path"/> cannot be found.</exception>
/// <seealso cref="InputControlPath"/>
/// <seealso cref="path"/>
/// <seealso cref="TryGetChildControl"/>
public InputControl this[string path]
{
get
{
var control = InputControlPath.TryFindChild(this, path);
if (control == null)
throw new KeyNotFoundException(
$"Cannot find control '{path}' as child of '{this}'");
return control;
}
}
/// <summary>
/// Returns the underlying value type of this control.
/// </summary>
/// <value>Type of values produced by the control.</value>
/// <remarks>
/// This is the type of values that are returned when reading the current value of a control
/// or when reading a value of a control from an event.
/// </remarks>
/// <seealso cref="valueSizeInBytes"/>
/// <seealso cref="ReadValueFromStateAsObject"/>
public abstract Type valueType { get; }
/// <summary>
/// Size in bytes of values that the control returns.
/// </summary>
/// <seealso cref="valueType"/>
public abstract int valueSizeInBytes { get; }
/// <summary>
/// Return a string representation of the control useful for debugging.
/// </summary>
/// <returns>A string representation of the control.</returns>
public override string ToString()
{
return $"{layout}:{path}";
}
private string DebuggerDisplay()
{
// If the device hasn't been added, don't try to read the control's value.
if (!device.added)
return ToString();
// ReadValueAsObject might throw. Revert to just ToString() in that case.
try
{
return $"{layout}:{path}={this.ReadValueAsObject()}";
}
catch (Exception)
{
return ToString();
}
}
////REVIEW: The -1 behavior seems bad; probably better to just return 1 for controls that do not support finer levels of actuation
/// <summary>
/// Compute an absolute, normalized magnitude value that indicates the extent to which the control
/// is actuated.
/// </summary>
/// <returns>Amount of actuation of the control or -1 if it cannot be determined.</returns>
/// <remarks>
/// Magnitudes do not make sense for all types of controls. For example, for a control that represents
/// an enumeration of values (such as <see cref="TouchPhaseControl"/>), there is no meaningful
/// linear ordering of values (one could derive a linear ordering through the actual enum values but
/// their assignment may be entirely arbitrary; it is unclear whether a state of <see cref="TouchPhase.Canceled"/>
/// has a higher or lower "magnitude" as a state of <see cref="TouchPhase.Began"/>).
///
/// Controls that have no meaningful magnitude will return -1 when calling this method. Any negative
/// return value should be considered an invalid value.
/// </remarks>
/// <seealso cref="EvaluateMagnitude(void*)"/>
public unsafe float EvaluateMagnitude()
{
return EvaluateMagnitude(currentStatePtr);
}
/// <summary>
/// Compute an absolute, normalized magnitude value that indicates the extent to which the control
/// is actuated in the given state.
/// </summary>
/// <param name="statePtr">State containing the control's <see cref="stateBlock"/>.</param>
/// <returns>Amount of actuation of the control or -1 if it cannot be determined.</returns>
/// <seealso cref="EvaluateMagnitude()"/>
/// <seealso cref="stateBlock"/>
public virtual unsafe float EvaluateMagnitude(void* statePtr)
{
return -1;
}
public abstract unsafe object ReadValueFromBufferAsObject(void* buffer, int bufferSize);
/// <summary>
/// Read the control's final, processed value from the given state and return the value as an object.
/// </summary>
/// <param name="statePtr"></param>
/// <returns>The control's value as stored in <paramref name="statePtr"/>.</returns>
/// <remarks>
/// This method allocates GC memory and should not be used during normal gameplay operation.
/// </remarks>
/// <exception cref="ArgumentNullException"><paramref name="statePtr"/> is null.</exception>
/// <seealso cref="ReadValueFromStateIntoBuffer"/>
public abstract unsafe object ReadValueFromStateAsObject(void* statePtr);
/// <summary>
/// Read the control's final, processed value from the given state and store it in the given buffer.
/// </summary>
/// <param name="statePtr">State to read the value for the control from.</param>
/// <param name="bufferPtr">Buffer to store the value in.</param>
/// <param name="bufferSize">Size of <paramref name="bufferPtr"/> in bytes. Must be at least <see cref="valueSizeInBytes"/>.
/// If it is smaller, <see cref="ArgumentException"/> will be thrown.</param>
/// <exception cref="ArgumentNullException"><paramref name="statePtr"/> is null, or <paramref name="bufferPtr"/> is null.</exception>
/// <exception cref="ArgumentException"><paramref name="bufferSize"/> is smaller than <see cref="valueSizeInBytes"/>.</exception>
/// <seealso cref="ReadValueFromStateAsObject"/>
/// <seealso cref="WriteValueFromBufferIntoState"/>
public abstract unsafe void ReadValueFromStateIntoBuffer(void* statePtr, void* bufferPtr, int bufferSize);
/// <summary>
/// Read a value from the given memory and store it as state.
/// </summary>
/// <param name="bufferPtr">Memory containing value.</param>
/// <param name="bufferSize">Size of <paramref name="bufferPtr"/> in bytes. Must be at least <see cref="valueSizeInBytes"/>.</param>
/// <param name="statePtr">State containing the control's <see cref="stateBlock"/>. Will receive the state
/// as converted from the given value.</param>
/// <remarks>
/// Writing values will NOT apply processors to the given value. This can mean that when reading a value
/// from a control after it has been written to its state, the resulting value differs from what was
/// written.
/// </remarks>
/// <exception cref="NotSupportedException">The control does not support writing. This is the case, for
/// example, that compute values (such as the magnitude of a vector).</exception>
/// <seealso cref="ReadValueFromStateIntoBuffer"/>
/// <seealso cref="WriteValueFromObjectIntoState"/>
public virtual unsafe void WriteValueFromBufferIntoState(void* bufferPtr, int bufferSize, void* statePtr)
{
throw new NotSupportedException(
$"Control '{this}' does not support writing");
}
/// <summary>
/// Read a value object and store it as state in the given memory.
/// </summary>
/// <param name="value">Value for the control.</param>
/// <param name="statePtr">State containing the control's <see cref="stateBlock"/>. Will receive
/// the state state as converted from the given value.</param>
/// <remarks>
/// Writing values will NOT apply processors to the given value. This can mean that when reading a value
/// from a control after it has been written to its state, the resulting value differs from what was
/// written.
/// </remarks>
/// <exception cref="NotSupportedException">The control does not support writing. This is the case, for
/// example, that compute values (such as the magnitude of a vector).</exception>
/// <seealso cref="WriteValueFromBufferIntoState"/>
public virtual unsafe void WriteValueFromObjectIntoState(object value, void* statePtr)
{
throw new NotSupportedException(
$"Control '{this}' does not support writing");
}
/// <summary>
/// Compare the value of the control as read from <paramref name="firstStatePtr"/> to that read from
/// <paramref name="secondStatePtr"/> and return true if they are equal.
/// </summary>
/// <param name="firstStatePtr">Memory containing the control's <see cref="stateBlock"/>.</param>
/// <param name="secondStatePtr">Memory containing the control's <see cref="stateBlock"/></param>
/// <returns>True if the value of the control is equal in both <paramref name="firstStatePtr"/> and
/// <paramref name="secondStatePtr"/>.</returns>
/// <remarks>
/// Unlike <see cref="CompareValue"/>, this method will have to do more than just compare the memory
/// for the control in the two state buffers. It will have to read out state for the control and run
/// the full processing machinery for the control to turn the state into a final, processed value.
/// CompareValue is thus more costly than <see cref="CompareValue"/>.
///
/// This method will apply epsilons (<see cref="Mathf.Epsilon"/>) when comparing floats.
/// </remarks>
/// <seealso cref="CompareValue"/>
public abstract unsafe bool CompareValue(void* firstStatePtr, void* secondStatePtr);
/// <summary>
/// Try to find a child control matching the given path.
/// </summary>
/// <param name="path">A control path. See <see cref="InputControlPath"/>.</param>
/// <returns>The first direct or indirect child control that matches the given <paramref name="path"/>
/// or null if no control was found to match.</returns>
/// <exception cref="ArgumentNullException"><paramref name="path"/> is <c>null</c> or empty.</exception>
/// <remarks>
/// Note that if the given path matches multiple child controls, only the first control
/// encountered in the search will be returned.
///
/// <example>
/// <code>
/// // Returns the leftStick control of the current gamepad.
/// Gamepad.current.TryGetChildControl("leftStick");
///
/// // Returns the X axis control of the leftStick on the current gamepad.
/// Gamepad.current.TryGetChildControl("leftStick/x");
///
/// // Returns the first control ending with "stick" in its name. Note that it
/// // undetermined whether this is leftStick or rightStick (or even another stick
/// // added by the given gamepad).
/// Gamepad.current.TryGetChildControl("*stick");
/// </code>
/// </example>
///
/// This method is equivalent to calling <see cref="InputControlPath.TryFindChild"/>.
/// </remarks>
public InputControl TryGetChildControl(string path)
{
if (string.IsNullOrEmpty(path))
throw new ArgumentNullException(nameof(path));
return InputControlPath.TryFindChild(this, path);
}
public TControl TryGetChildControl<TControl>(string path)
where TControl : InputControl
{
if (string.IsNullOrEmpty(path))
throw new ArgumentNullException(nameof(path));
var control = TryGetChildControl(path);
if (control == null)
return null;
var controlOfType = control as TControl;
if (controlOfType == null)
throw new InvalidOperationException(
$"Expected control '{path}' to be of type '{typeof(TControl).Name}' but is of type '{control.GetType().Name}' instead!");
return controlOfType;
}
public InputControl GetChildControl(string path)
{
if (string.IsNullOrEmpty(path))
throw new ArgumentNullException(nameof(path));
var control = TryGetChildControl(path);
if (control == null)
throw new ArgumentException($"Cannot find input control '{MakeChildPath(path)}'", nameof(path));
return control;
}
public TControl GetChildControl<TControl>(string path)
where TControl : InputControl
{
var control = GetChildControl(path);
if (!(control is TControl controlOfType))
throw new ArgumentException(
$"Expected control '{path}' to be of type '{typeof(TControl).Name}' but is of type '{control.GetType().Name}' instead!", nameof(path));
return controlOfType;
}
protected InputControl()
{
// Set defaults for state block setup. Subclasses may override.
m_StateBlock.byteOffset = InputStateBlock.AutomaticOffset; // Request automatic layout by default.
}
/// <summary>
/// Perform final initialization tasks after the control hierarchy has been put into place.
/// </summary>
/// <remarks>
/// This method can be overridden to perform control- or device-specific setup work. The most
/// common use case is for looking up child controls and storing them in local getters.
///
/// <example>
/// <code>
/// public class MyDevice : InputDevice
/// {
/// public ButtonControl button { get; private set; }
/// public AxisControl axis { get; private set; }
///
/// protected override void OnFinishSetup()
/// {
/// // Cache controls in getters.
/// button = GetChildControl("button");
/// axis = GetChildControl("axis");
/// }
/// }
/// </code>
/// </example>
/// </remarks>
protected virtual void FinishSetup()
{
}
/// <summary>
/// Call <see cref="RefreshConfiguration"/> if the configuration has in the interim been invalidated
/// by a <see cref="DeviceConfigurationEvent"/>.
/// </summary>
/// <remarks>
/// This method is only relevant if you are implementing your own devices or new
/// types of controls which are fetching configuration data from the devices (such
/// as <see cref="KeyControl"/> which is fetching display names for individual keys
/// from the underlying platform).
///
/// This method should be called if you are accessing cached data set up by
/// <see cref="RefreshConfiguration"/>.
///
/// <example>
/// <code>
/// // Let's say your device has an associated orientation which it can be held with
/// // and you want to surface both as a property and as a usage on the device.
/// // Whenever your backend code detects a change in orientation, it should send
/// // a DeviceConfigurationEvent to your device to signal that the configuration
/// // of the device has changed. You can then implement RefreshConfiguration() to
/// // read out and update the device orientation on the managed InputDevice instance.
/// public class MyDevice : InputDevice
/// {
/// public enum Orientation
/// {
/// Horizontal,
/// Vertical,
/// }
///
/// private Orientation m_Orientation;
/// public Orientation orientation
/// {
/// get
/// {
/// // Call RefreshOrientation if the configuration of the device has been
/// // invalidated since last time we initialized m_Orientation.
/// RefreshConfigurationIfNeeded();
/// return m_Orientation;
/// }
/// }
/// protected override void RefreshConfiguration()
/// {
/// // Fetch the current orientation from the backend. How you do this
/// // depends on your device. Using DeviceCommands is one way.
/// var fetchOrientationCommand = new FetchOrientationCommand();
/// ExecuteCommand(ref fetchOrientationCommand);
/// m_Orientation = fetchOrientation;
///
/// // Reflect the orientation on the device.
/// switch (m_Orientation)
/// {
/// case Orientation.Vertical:
/// InputSystem.RemoveDeviceUsage(this, s_Horizontal);
/// InputSystem.AddDeviceUsage(this, s_Vertical);
/// break;
///
/// case Orientation.Horizontal:
/// InputSystem.RemoveDeviceUsage(this, s_Vertical);
/// InputSystem.AddDeviceUsage(this, s_Horizontal);
/// break;
/// }
/// }
///
/// private static InternedString s_Vertical = new InternedString("Vertical");
/// private static InternedString s_Horizontal = new InternedString("Horizontal");
/// }
/// </code>
/// </example>
/// </remarks>
/// <seealso cref="RefreshConfiguration"/>
protected void RefreshConfigurationIfNeeded()
{
if (!isConfigUpToDate)
{
RefreshConfiguration();
isConfigUpToDate = true;
}
}
protected virtual void RefreshConfiguration()
{
}
////TODO: drop protected access
protected internal InputStateBlock m_StateBlock;
////REVIEW: shouldn't these sit on the device?
protected internal unsafe void* currentStatePtr => InputStateBuffers.GetFrontBufferForDevice(GetDeviceIndex());
protected internal unsafe void* previousFrameStatePtr => InputStateBuffers.GetBackBufferForDevice(GetDeviceIndex());
protected internal unsafe void* defaultStatePtr => InputStateBuffers.s_DefaultStateBuffer;
/// <summary>
/// Return the memory that holds the noise mask for the control.
/// </summary>
/// <value>Noise bit mask for the control.</value>
/// <remarks>
/// Like with all state blocks, the specific memory block for the control is found at the memory
/// region specified by <see cref="stateBlock"/>.
///
/// The noise mask can be overlaid as a bit mask over the state for the control. When doing so, all state
/// that is noise will be masked out whereas all state that isn't will come through unmodified. In other words,
/// any bit that is set in the noise mask indicates that the corresponding bit in the control's state memory
/// is noise.
/// </remarks>
/// <seealso cref="noisy"/>
protected internal unsafe void* noiseMaskPtr => InputStateBuffers.s_NoiseMaskBuffer;
/// <summary>
/// The offset of this control's state relative to its device root.
/// </summary>
/// <remarks>
/// Once a device has been added to the system, its state block will get allocated
/// in the global state buffers and the offset of the device's state block will
/// get baked into all of the controls on the device. This property always returns
/// the "unbaked" offset.
/// </remarks>
protected internal uint stateOffsetRelativeToDeviceRoot
{
get
{
var deviceStateOffset = device.m_StateBlock.byteOffset;
Debug.Assert(deviceStateOffset <= m_StateBlock.byteOffset);
return m_StateBlock.byteOffset - deviceStateOffset;
}
}
// This data is initialized by InputDeviceBuilder.
internal InternedString m_Name;
internal string m_Path;
internal string m_DisplayName; // Display name set by the control itself (may be null).
internal string m_DisplayNameFromLayout; // Display name coming from layout (may be null).
internal string m_ShortDisplayName; // Short display name set by the control itself (may be null).
internal string m_ShortDisplayNameFromLayout; // Short display name coming from layout (may be null).
internal InternedString m_Layout;
internal InternedString m_Variants;
internal InputDevice m_Device;
internal InputControl m_Parent;
internal int m_UsageCount;
internal int m_UsageStartIndex;
internal int m_AliasCount;
internal int m_AliasStartIndex;
internal int m_ChildCount;
internal int m_ChildStartIndex;
internal ControlFlags m_ControlFlags;
////REVIEW: store these in arrays in InputDevice instead?
internal PrimitiveValue m_DefaultState;
internal PrimitiveValue m_MinValue;
internal PrimitiveValue m_MaxValue;
[Flags]
internal enum ControlFlags
{
ConfigUpToDate = 1 << 0,
IsNoisy = 1 << 1,
IsSynthetic = 1 << 2,
IsButton = 1 << 3,
DontReset = 1 << 4,
SetupFinished = 1 << 5, // Can't be modified once this is set.
UsesStateFromOtherControl = 1 << 6,
}
internal bool isSetupFinished
{
get => (m_ControlFlags & ControlFlags.SetupFinished) == ControlFlags.SetupFinished;
set
{
if (value)
m_ControlFlags |= ControlFlags.SetupFinished;
else
m_ControlFlags &= ~ControlFlags.SetupFinished;
}
}
internal bool isButton
{
get => (m_ControlFlags & ControlFlags.IsButton) == ControlFlags.IsButton;
set
{
if (value)
m_ControlFlags |= ControlFlags.IsButton;
else
m_ControlFlags &= ~ControlFlags.IsButton;
}
}
internal bool isConfigUpToDate
{
get => (m_ControlFlags & ControlFlags.ConfigUpToDate) == ControlFlags.ConfigUpToDate;
set
{
if (value)
m_ControlFlags |= ControlFlags.ConfigUpToDate;
else
m_ControlFlags &= ~ControlFlags.ConfigUpToDate;
}
}
internal bool dontReset
{
get => (m_ControlFlags & ControlFlags.DontReset) == ControlFlags.DontReset;
set
{
if (value)
m_ControlFlags |= ControlFlags.DontReset;
else
m_ControlFlags &= ~ControlFlags.DontReset;
}
}
internal bool usesStateFromOtherControl
{
get => (m_ControlFlags & ControlFlags.UsesStateFromOtherControl) == ControlFlags.UsesStateFromOtherControl;
set
{
if (value)
m_ControlFlags |= ControlFlags.UsesStateFromOtherControl;
else
m_ControlFlags &= ~ControlFlags.UsesStateFromOtherControl;
}
}
internal bool hasDefaultState => !m_DefaultState.isEmpty;
// This method exists only to not slap the internal interaction on all overrides of
// FinishSetup().
internal void CallFinishSetupRecursive()
{
var list = children;
for (var i = 0; i < list.Count; ++i)
list[i].CallFinishSetupRecursive();
FinishSetup();
}
internal string MakeChildPath(string path)
{
if (this is InputDevice)
return path;
return $"{this.path}/{path}";
}
internal void BakeOffsetIntoStateBlockRecursive(uint offset)
{
m_StateBlock.byteOffset += offset;
var list = children;
for (var i = 0; i < list.Count; ++i)
list[i].BakeOffsetIntoStateBlockRecursive(offset);
}
internal int GetDeviceIndex()
{
var deviceIndex = m_Device.m_DeviceIndex;
if (deviceIndex == InputDevice.kInvalidDeviceIndex)
throw new InvalidOperationException(
$"Cannot query value of control '{path}' before '{device.name}' has been added to system!");
return deviceIndex;
}
internal bool IsValueConsideredPressed(float value)
{
if (isButton)
return ((ButtonControl)this).IsValueConsideredPressed(value);
return value >= ButtonControl.s_GlobalDefaultButtonPressPoint;
}
internal virtual void AddProcessor(object first)
{
}
#if UNITY_EDITOR
internal virtual IEnumerable<object> GetProcessors()
{
yield return null;
}
#endif
}
/// <summary>
/// Base class for input controls with a specific value type.
/// </summary>
/// <typeparam name="TValue">Type of value captured by the control. Note that this does not mean
/// that the control has to store data in the given value format. A control that captures float
/// values, for example, may be stored in state as byte values instead.</typeparam>
public abstract class InputControl<TValue> : InputControl
where TValue : struct
{
public override Type valueType => typeof(TValue);
public override int valueSizeInBytes => UnsafeUtility.SizeOf<TValue>();
/// <summary>
/// Get the control's current value as read from <see cref="InputControl.currentStatePtr"/>
/// </summary>
/// <returns>The control's current value.</returns>
/// <remarks>
/// This can only be called on devices that have been added to the system (<see cref="InputDevice.added"/>).
/// </remarks>
public TValue ReadValue()
{
unsafe
{
return ReadValueFromState(currentStatePtr);
}
}
////REVIEW: is 'frame' really the best wording here?
/// <summary>
/// Get the control's value from the previous frame (<see cref="InputControl.previousFrameStatePtr"/>).
/// </summary>
/// <returns>The control's value in the previous frame.</returns>
public TValue ReadValueFromPreviousFrame()
{
unsafe
{
return ReadValueFromState(previousFrameStatePtr);
}
}
/// <summary>
/// Get the control's default value.
/// </summary>
/// <returns>The control's default value.</returns>
/// <remarks>
/// This is not necessarily equivalent to <c>default(TValue)</c>. A control's default value is determined
/// by reading its value from the default state (<see cref="InputControl.defaultStatePtr"/>) which in turn
/// is determined from settings in the control's registered layout (<see cref="InputControlLayout.ControlItem.defaultState"/>).
/// </remarks>
public TValue ReadDefaultValue()
{
unsafe
{
return ReadValueFromState(defaultStatePtr);
}
}
public unsafe TValue ReadValueFromState(void* statePtr)
{
if (statePtr == null)
throw new ArgumentNullException(nameof(statePtr));
return ProcessValue(ReadUnprocessedValueFromState(statePtr));
}
public TValue ReadUnprocessedValue()
{
unsafe
{
return ReadUnprocessedValueFromState(currentStatePtr);
}
}
public abstract unsafe TValue ReadUnprocessedValueFromState(void* statePtr);
/// <inheritdoc />
public override unsafe object ReadValueFromStateAsObject(void* statePtr)
{
return ReadValueFromState(statePtr);
}
/// <inheritdoc />
public override unsafe void ReadValueFromStateIntoBuffer(void* statePtr, void* bufferPtr, int bufferSize)
{
if (statePtr == null)
throw new ArgumentNullException(nameof(statePtr));
if (bufferPtr == null)
throw new ArgumentNullException(nameof(bufferPtr));
var numBytes = UnsafeUtility.SizeOf<TValue>();
if (bufferSize < numBytes)
throw new ArgumentException(
$"bufferSize={bufferSize} < sizeof(TValue)={numBytes}", nameof(bufferSize));
var value = ReadValueFromState(statePtr);
var valuePtr = UnsafeUtility.AddressOf(ref value);
UnsafeUtility.MemCpy(bufferPtr, valuePtr, numBytes);
}
public override unsafe void WriteValueFromBufferIntoState(void* bufferPtr, int bufferSize, void* statePtr)
{
if (bufferPtr == null)
throw new ArgumentNullException(nameof(bufferPtr));
if (statePtr == null)
throw new ArgumentNullException(nameof(statePtr));
var numBytes = UnsafeUtility.SizeOf<TValue>();
if (bufferSize < numBytes)
throw new ArgumentException(
$"bufferSize={bufferSize} < sizeof(TValue)={numBytes}", nameof(bufferSize));
// C# won't let us use a pointer to a generically defined type. Work
// around this by using UnsafeUtility.
var value = default(TValue);
var valuePtr = UnsafeUtility.AddressOf(ref value);
UnsafeUtility.MemCpy(valuePtr, bufferPtr, numBytes);
WriteValueIntoState(value, statePtr);
}
/// <inheritdoc />
public override unsafe void WriteValueFromObjectIntoState(object value, void* statePtr)
{
if (statePtr == null)
throw new ArgumentNullException(nameof(statePtr));
if (value == null)
throw new ArgumentNullException(nameof(value));
// If value is not of expected type, try to convert.
if (!(value is TValue))
value = Convert.ChangeType(value, typeof(TValue));
var valueOfType = (TValue)value;
WriteValueIntoState(valueOfType, statePtr);
}
public virtual unsafe void WriteValueIntoState(TValue value, void* statePtr)
{
////REVIEW: should we be able to even tell from layouts which controls support writing and which don't?
throw new NotSupportedException(
$"Control '{this}' does not support writing");
}
/// <inheritdoc />
public override unsafe object ReadValueFromBufferAsObject(void* buffer, int bufferSize)
{
if (buffer == null)
throw new ArgumentNullException(nameof(buffer));
var valueSize = UnsafeUtility.SizeOf<TValue>();
if (bufferSize < valueSize)
throw new ArgumentException(
$"Expecting buffer of at least {valueSize} bytes for value of type {typeof(TValue).Name} but got buffer of only {bufferSize} bytes instead",
nameof(bufferSize));
var value = default(TValue);
var valuePtr = UnsafeUtility.AddressOf(ref value);
UnsafeUtility.MemCpy(valuePtr, buffer, valueSize);
return value;
}
public override unsafe bool CompareValue(void* firstStatePtr, void* secondStatePtr)
{
////REVIEW: should we first compare state here? if there's no change in state, there can be no change in value and we can skip the rest
var firstValue = ReadValueFromState(firstStatePtr);
var secondValue = ReadValueFromState(secondStatePtr);
var firstValuePtr = UnsafeUtility.AddressOf(ref firstValue);
var secondValuePtr = UnsafeUtility.AddressOf(ref secondValue);
// NOTE: We're comparing raw memory of processed values here (which are guaranteed to be structs or
// primitives), not state. Means we don't have to take bits into account here.
return UnsafeUtility.MemCmp(firstValuePtr, secondValuePtr, UnsafeUtility.SizeOf<TValue>()) != 0;
}
public TValue ProcessValue(TValue value)
{
if (m_ProcessorStack.length > 0)
{
value = m_ProcessorStack.firstValue.Process(value, this);
if (m_ProcessorStack.additionalValues != null)
for (var i = 0; i < m_ProcessorStack.length - 1; ++i)
value = m_ProcessorStack.additionalValues[i].Process(value, this);
}
return value;
}
internal InlinedArray<InputProcessor<TValue>> m_ProcessorStack;
// Only layouts are allowed to modify the processor stack.
internal TProcessor TryGetProcessor<TProcessor>()
where TProcessor : InputProcessor<TValue>
{
if (m_ProcessorStack.length > 0)
{
if (m_ProcessorStack.firstValue is TProcessor processor)
return processor;
if (m_ProcessorStack.additionalValues != null)
for (var i = 0; i < m_ProcessorStack.length - 1; ++i)
if (m_ProcessorStack.additionalValues[i] is TProcessor result)
return result;
}
return default;
}
internal override void AddProcessor(object processor)
{
if (!(processor is InputProcessor<TValue> processorOfType))
throw new ArgumentException(
$"Cannot add processor of type '{processor.GetType().Name}' to control of type '{GetType().Name}'", nameof(processor));
m_ProcessorStack.Append(processorOfType);
}
#if UNITY_EDITOR
internal override IEnumerable<object> GetProcessors()
{
foreach (var processor in m_ProcessorStack)
yield return processor;
}
#endif
internal InputProcessor<TValue>[] processors => m_ProcessorStack.ToArray();
}
}