Firstborn/Library/PackageCache/com.unity.inputsystem@1.4.4/InputSystem/Actions/InputActionMap.cs
Schaken-Mods b486678290 Library -Artifacts
Library -Artifacts
2023-03-28 12:24:16 -05:00

1975 lines
85 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using Unity.Collections;
using UnityEngine.InputSystem.Utilities;
////REVIEW: given we have the global ActionPerformed callback, do we really need the per-map callback?
////TODO: remove constraint of not being able to modify bindings while enabled from both actions and maps
//// (because of the sharing of state between multiple maps in an asset, we'd have to extend that constraint
//// to all maps in an asset in order to uphold it properly)
namespace UnityEngine.InputSystem
{
/// <summary>
/// A mechanism for collecting a series of input actions (see <see cref="InputAction"/>)
/// and treating them as a group.
/// </summary>
/// <remarks>
/// Each action map is a named collection of bindings and actions. Both are stored
/// as a flat list. The bindings are available through the <see cref="bindings"/>
/// property and the actions are available through the <see cref="actions"/> property.
///
/// The actions in a map are owned by the map. No action can appear in two maps
/// at the same time. To find the action map an action belongs to, use the
/// <see cref="InputAction.actionMap"/> property. Note that actions can also stand
/// on their own and thus do not necessarily need to belong to a map (in which case
/// the <see cref="InputAction.actionMap"/> property is <c>null</c>).
///
/// Within a map, all actions have to have names and each action name must
/// be unique. The <see cref="InputBinding.action"/> property of bindings in a map
/// are resolved within the <see cref="actions"/> in the map. Looking up actions
/// by name can be done through <see cref="FindAction(string,bool)"/>.
///
/// The <see cref="name"/> of the map itself can be empty, except if the map is part of
/// an <see cref="InputActionAsset"/> in which case it is required to have a name
/// which also must be unique within the asset.
///
/// Action maps are most useful for grouping actions that contextually
/// belong together. For example, one common usage is to separate the actions
/// that can be performed in the UI or in the main menu from those that can
/// be performed during gameplay. However, even within gameplay, multiple action
/// maps can be employed. For example, one could have different action maps for
/// driving and for walking plus one more map for the actions shared between
/// the two modes.
///
/// Action maps are usually created in the <a href="../manual/ActionAssets.html">action
/// editor</a> as part of <see cref="InputActionAsset"/>s. However, they can also be
/// created standing on their own directly in code or from JSON (see <see cref="FromJson"/>).
///
/// <example>
/// <code>
/// // Create a free-standing action map.
/// var map = new InputActionMap();
///
/// // Add some actions and bindings to it.
/// map.AddAction("action1", binding: "&lt;Keyboard&gt;/space");
/// map.AddAction("action2", binding: "&lt;Gamepad&gt;/buttonSouth");
/// </code>
/// </example>
///
/// Actions in action maps, like actions existing by themselves outside of action
/// maps, do not actively process input except if enabled. Actions can either
/// be enabled individually (see <see cref="InputAction.Enable"/> and <see
/// cref="InputAction.Disable"/>) or in bulk by enabling and disabling the
/// entire map (see <see cref="Enable"/> and <see cref="Disable"/>).
/// </remarks>
/// <seealso cref="InputActionAsset"/>
/// <seealso cref="InputAction"/>
[Serializable]
public sealed class InputActionMap : ICloneable, ISerializationCallbackReceiver, IInputActionCollection2, IDisposable
{
/// <summary>
/// Name of the action map.
/// </summary>
/// <value>Name of the action map.</value>
/// <remarks>
/// For action maps that are part of <see cref="InputActionAsset"/>s, this will always be
/// a non-null, non-empty string that is unique within the maps in the asset. For action maps
/// that are standing on their own, this can be null or empty.
/// </remarks>
public string name => m_Name;
/// <summary>
/// If the action map is part of an asset, this refers to the asset. Otherwise it is <c>null</c>.
/// </summary>
/// <value>Asset to which the action map belongs.</value>
public InputActionAsset asset => m_Asset;
/// <summary>
/// A stable, unique identifier for the map.
/// </summary>
/// <value>Unique ID for the action map.</value>
/// <remarks>
/// This can be used instead of the name to refer to the action map. Doing so allows referring to the
/// map such that renaming it does not break references.
/// </remarks>
/// <seealso cref="InputAction.id"/>
public Guid id
{
get
{
if (string.IsNullOrEmpty(m_Id))
GenerateId();
return new Guid(m_Id);
}
}
internal Guid idDontGenerate
{
get
{
if (string.IsNullOrEmpty(m_Id))
return default;
return new Guid(m_Id);
}
}
/// <summary>
/// Whether any action in the map is currently enabled.
/// </summary>
/// <value>True if any action in <see cref="actions"/> is currently enabled.</value>
/// <seealso cref="InputAction.enabled"/>
/// <seealso cref="Enable"/>
/// <seealso cref="InputAction.Enable"/>
public bool enabled => m_EnabledActionsCount > 0;
/// <summary>
/// List of actions contained in the map.
/// </summary>
/// <value>Collection of actions belonging to the map.</value>
/// <remarks>
/// Actions are owned by their map. The same action cannot appear in multiple maps.
///
/// Accessing this property. Note that values returned by the property become invalid if
/// the setup of actions in a map is changed.
/// </remarks>
/// <seealso cref="InputAction.actionMap"/>
public ReadOnlyArray<InputAction> actions => new ReadOnlyArray<InputAction>(m_Actions);
/// <summary>
/// List of bindings contained in the map.
/// </summary>
/// <value>Collection of bindings in the map.</value>
/// <remarks>
/// <see cref="InputBinding"/>s are owned by action maps and not by individual actions.
///
/// Bindings that trigger actions refer to the action by <see cref="InputAction.name"/>
/// or <see cref="InputAction.id"/>.
///
/// Accessing this property does not allocate. Note that values returned by the property
/// become invalid if the setup of bindings in a map is changed.
/// </remarks>
/// <seealso cref="InputAction.bindings"/>
public ReadOnlyArray<InputBinding> bindings => new ReadOnlyArray<InputBinding>(m_Bindings);
IEnumerable<InputBinding> IInputActionCollection2.bindings => bindings;
/// <summary>
/// Control schemes defined for the action map.
/// </summary>
/// <value>List of available control schemes.</value>
/// <remarks>
/// Control schemes can only be defined at the level of <see cref="InputActionAsset"/>s.
/// For action maps that are part of assets, this property will return the control schemes
/// from the asset. For free-standing action maps, this will return an empty list.
/// </remarks>
/// <seealso cref="InputActionAsset.controlSchemes"/>
public ReadOnlyArray<InputControlScheme> controlSchemes
{
get
{
if (m_Asset == null)
return new ReadOnlyArray<InputControlScheme>();
return m_Asset.controlSchemes;
}
}
/// <summary>
/// Binding mask to apply to all actions in the asset.
/// </summary>
/// <value>Optional mask that determines which bindings in the action map to enable.</value>
/// <remarks>
/// Binding masks can be applied at three different levels: for an entire asset through
/// <see cref="InputActionAsset.bindingMask"/>, for a specific map through this property,
/// and for single actions through <see cref="InputAction.bindingMask"/>. By default,
/// none of the masks will be set (that is, they will be <c>null</c>).
///
/// When an action is enabled, all the binding masks that apply to it are taken into
/// account. Specifically, this means that any given binding on the action will be
/// enabled only if it matches the mask applied to the asset, the mask applied
/// to the map that contains the action, and the mask applied to the action itself.
/// All the masks are individually optional.
///
/// Masks are matched against bindings using <see cref="InputBinding.Matches"/>.
///
/// Note that if you modify the masks applicable to an action while it is
/// enabled, the action's <see cref="InputAction.controls"/> will get updated immediately to
/// respect the mask. To avoid repeated binding resolution, it is most efficient
/// to apply binding masks before enabling actions.
///
/// Binding masks are non-destructive. All the bindings on the action are left
/// in place. Setting a mask will not affect the value of the <see cref="InputAction.bindings"/>
/// and <see cref="bindings"/> properties.
/// </remarks>
/// <seealso cref="InputBinding.MaskByGroup"/>
/// <seealso cref="InputAction.bindingMask"/>
/// <seealso cref="InputActionAsset.bindingMask"/>
public InputBinding? bindingMask
{
get => m_BindingMask;
set
{
if (m_BindingMask == value)
return;
m_BindingMask = value;
LazyResolveBindings(fullResolve: true);
}
}
/// <summary>
/// Set of devices that bindings in the action map can bind to.
/// </summary>
/// <value>Optional set of devices to use by bindings in the map.</value>
/// <remarks>
/// By default (with this property being <c>null</c>), bindings will bind to any of the
/// controls available through <see cref="InputSystem.devices"/>, that is, controls from all
/// devices in the system will be used.
///
/// By setting this property, binding resolution can instead be restricted to just specific
/// devices. This restriction can either be applied to an entire asset using <see
/// cref="InputActionMap.devices"/> or to specific action maps by using this property. Note that
/// if both this property and <see cref="InputActionAsset.devices"/> is set for a specific action
/// map, the list of devices on the action map will take precedence and the list on the
/// asset will be ignored for bindings in that action map.
///
/// <example>
/// <code>
/// // Create an action map containing a single action with a gamepad binding.
/// var actionMap = new InputActionMap();
/// var fireAction = actionMap.AddAction("Fire", binding: "&lt;Gamepad&gt;/buttonSouth");
/// asset.AddActionMap(actionMap);
///
/// // Let's assume we have two gamepads connected. If we enable the
/// // action map now, the 'Fire' action will bind to both.
/// actionMap.Enable();
///
/// // This will print two controls.
/// Debug.Log(string.Join("\n", fireAction.controls));
///
/// // To restrict the setup to just the first gamepad, we can assign
/// // to the 'devices' property.
/// actionMap.devices = new InputDevice[] { Gamepad.all[0] };
///
/// // Now this will print only one control.
/// Debug.Log(string.Join("\n", fireAction.controls));
/// </code>
/// </example>
/// </remarks>
/// <seealso cref="InputActionAsset.devices"/>
public ReadOnlyArray<InputDevice>? devices
{
// Return asset's device list if we have none (only if we're part of an asset).
get => m_Devices.Get() ?? m_Asset?.devices;
set
{
if (m_Devices.Set(value))
LazyResolveBindings(fullResolve: false);
}
}
/// <summary>
/// Look up an action by name or ID.
/// </summary>
/// <param name="actionNameOrId">Name (as in <see cref="InputAction.name"/>) or ID (as in <see cref="InputAction.id"/>)
/// of the action. Note that matching of names is case-insensitive.</param>
/// <exception cref="ArgumentNullException"><paramref name="actionNameOrId"/> is <c>null</c>.</exception>
/// <exception cref="KeyNotFoundException">No action with the name or ID of <paramref name="actionNameOrId"/>
/// was found in the action map.</exception>
/// <remarks>
/// This method is equivalent to <see cref="FindAction(string,bool)"/> except it throws <c>KeyNotFoundException</c>
/// if no action with the given name or ID can be found.
/// </remarks>
/// <seealso cref="FindAction(string,bool)"/>
/// <seealso cref="FindAction(Guid)"/>
/// <see cref="actions"/>
public InputAction this[string actionNameOrId]
{
get
{
if (actionNameOrId == null)
throw new ArgumentNullException(nameof(actionNameOrId));
var action = FindAction(actionNameOrId);
if (action == null)
throw new KeyNotFoundException($"Cannot find action '{actionNameOrId}'");
return action;
}
}
////REVIEW: inconsistent naming; elsewhere we use "onActionTriggered" (which in turn is inconsistent with InputAction.started etc)
/// <summary>
/// Add or remove a callback that is triggered when an action in the map changes its <see cref="InputActionPhase">
/// phase</see>.
/// </summary>
/// <seealso cref="InputAction.started"/>
/// <seealso cref="InputAction.performed"/>
/// <seealso cref="InputAction.canceled"/>
public event Action<InputAction.CallbackContext> actionTriggered
{
add => m_ActionCallbacks.AddCallback(value);
remove => m_ActionCallbacks.RemoveCallback(value);
}
public InputActionMap()
{
}
/// <summary>
/// Construct an action map with the given name.
/// </summary>
/// <param name="name">Name to give to the action map. By default <c>null</c>, i.e. does
/// not assign a name to the map.</param>
public InputActionMap(string name)
: this()
{
m_Name = name;
}
/// <summary>
/// Release internal state held on to by the action map.
/// </summary>
/// <remarks>
/// Once actions in a map are enabled, the map will allocate a block of state internally that
/// it will hold on to until disposed of. All actions in the map will share the same internal
/// state. Also, if the map is part of an <see cref="InputActionAsset"/> all maps and actions
/// in the same asset will share the same internal state.
///
/// Note that the internal state holds on to GC heap memory as well as memory from the
/// unmanaged, C++ heap.
/// </remarks>
public void Dispose()
{
m_State?.Dispose();
}
internal int FindActionIndex(string nameOrId)
{
////REVIEW: have transient lookup table? worth optimizing this?
//// Ideally, this should at least be an InternedString comparison but due to serialization,
//// that's quite tricky.
if (string.IsNullOrEmpty(nameOrId))
return -1;
if (m_Actions == null)
return -1;
// First time we hit this method, we populate the lookup table.
SetUpActionLookupTable();
var actionCount = m_Actions.Length;
var isOldBracedFormat = nameOrId.StartsWith("{") && nameOrId.EndsWith("}");
if (isOldBracedFormat)
{
var length = nameOrId.Length - 2;
for (var i = 0; i < actionCount; ++i)
{
if (string.Compare(m_Actions[i].m_Id, 0, nameOrId, 1, length) == 0)
return i;
}
}
if (m_ActionIndexByNameOrId.TryGetValue(nameOrId, out var actionIndex))
return actionIndex;
for (var i = 0; i < actionCount; ++i)
{
var action = m_Actions[i];
if (action.m_Id == nameOrId || string.Compare(m_Actions[i].m_Name, nameOrId, StringComparison.InvariantCultureIgnoreCase) == 0)
return i;
}
return InputActionState.kInvalidIndex;
}
private void SetUpActionLookupTable()
{
if (m_ActionIndexByNameOrId != null || m_Actions == null)
return;
m_ActionIndexByNameOrId = new Dictionary<string, int>();
var actionCount = m_Actions.Length;
for (var i = 0; i < actionCount; ++i)
{
var action = m_Actions[i];
// We want to make sure an action ID cannot change *after* we have created the table.
// NOTE: The *name* of an action, however, *may* change.
action.MakeSureIdIsInPlace();
// We create two lookup paths for each action:
// (1) By case-sensitive name.
// (2) By GUID string.
m_ActionIndexByNameOrId[action.name] = i;
m_ActionIndexByNameOrId[action.m_Id] = i;
}
}
internal void ClearActionLookupTable()
{
m_ActionIndexByNameOrId?.Clear();
}
private int FindActionIndex(Guid id)
{
if (m_Actions == null)
return InputActionState.kInvalidIndex;
var actionCount = m_Actions.Length;
for (var i = 0; i < actionCount; ++i)
if (m_Actions[i].idDontGenerate == id)
return i;
return InputActionState.kInvalidIndex;
}
/// <summary>
/// Find an action in the map by name or ID.
/// </summary>
/// <param name="actionNameOrId">Name (as in <see cref="InputAction.name"/>) or ID (as in <see cref="InputAction.id"/>)
/// of the action. Note that matching of names is case-insensitive.</param>
/// <returns>The action with the given name or ID or <c>null</c> if no matching action
/// was found.</returns>
/// <exception cref="ArgumentNullException"><paramref name="actionNameOrId"/> is <c>null</c>.</exception>
/// <seealso cref="FindAction(Guid)"/>
public InputAction FindAction(string actionNameOrId, bool throwIfNotFound = false)
{
if (actionNameOrId == null)
throw new ArgumentNullException(nameof(actionNameOrId));
var index = FindActionIndex(actionNameOrId);
if (index == -1)
{
if (throwIfNotFound)
throw new ArgumentException($"No action '{actionNameOrId}' in '{this}'", nameof(actionNameOrId));
return null;
}
return m_Actions[index];
}
/// <summary>
/// Find an action by ID.
/// </summary>
/// <param name="id">ID (as in <see cref="InputAction.id"/>) of the action.</param>
/// <returns>The action with the given ID or null if no action in the map has
/// the given ID.</returns>
/// <seealso cref="FindAction(string,bool)"/>
public InputAction FindAction(Guid id)
{
var index = FindActionIndex(id);
if (index == -1)
return null;
return m_Actions[index];
}
/// <summary>
/// Check whether there are any bindings in the action map that can bind to
/// controls on the given device.
/// </summary>
/// <param name="device">An input device.</param>
/// <returns>True if any of the bindings in the map can resolve to controls on the device, false otherwise.</returns>
/// <exception cref="ArgumentNullException"><paramref name="device"/> is <c>null</c>.</exception>
/// <remarks>
/// The logic is entirely based on the contents of <see cref="bindings"/> and, more specifically,
/// <see cref="InputBinding.effectivePath"/> of each binding. Each path is checked using <see
/// cref="InputControlPath.Matches"/>. If any path matches, the method returns <c>true</c>.
///
/// Properties such as <see cref="devices"/> and <see cref="bindingMask"/> are ignored.
///
/// <example>
/// <code>
/// // Create action map with two actions and bindings.
/// var actionMap = new InputActionMap();
/// actionMap.AddAction("action1", binding: "&lt;Gamepad&gt;/buttonSouth");
/// actionMap.AddAction("action2", binding: "&lt;XRController{LeftHand}&gt;/{PrimaryAction}");
///
/// //
/// var gamepad = InputSystem.AddDevice&lt;Gamepad&gt;();
/// var xrController = InputSystem.AddDevice&lt;XRController&gt;();
///
/// // Returns true:
/// actionMap.IsUsableWith(gamepad);
///
/// // Returns false: (the XRController does not have the LeftHand usage assigned to it)
/// actionMap.IsUsableWith(xrController);
/// </code>
/// </example>
/// </remarks>
public bool IsUsableWithDevice(InputDevice device)
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (m_Bindings == null)
return false;
foreach (var binding in m_Bindings)
{
var path = binding.effectivePath;
if (string.IsNullOrEmpty(path))
continue;
if (InputControlPath.Matches(path, device))
return true;
}
return false;
}
/// <summary>
/// Enable all the actions in the map.
/// </summary>
/// <remarks>
/// This is equivalent to calling <see cref="InputAction.Enable"/> on each
/// action in <see cref="actions"/>, but is more efficient as the actions
/// will get enabled in bulk.
/// </remarks>
/// <seealso cref="Disable"/>
/// <seealso cref="enabled"/>
public void Enable()
{
if (m_Actions == null || m_EnabledActionsCount == m_Actions.Length)
return;
ResolveBindingsIfNecessary();
m_State.EnableAllActions(this);
}
/// <summary>
/// Disable all the actions in the map.
/// </summary>
/// <remarks>
/// This is equivalent to calling <see cref="InputAction.Disable"/> on each
/// action in <see cref="actions"/>, but is more efficient as the actions
/// will get disabled in bulk.
/// </remarks>
/// <seealso cref="Enable"/>
/// <seealso cref="enabled"/>
public void Disable()
{
if (!enabled)
return;
m_State.DisableAllActions(this);
}
/// <summary>
/// Produce an identical copy of the action map with its actions and bindings.
/// </summary>
/// <returns>A copy of the action map.</returns>
/// <remarks>
/// If the action map is part of an <see cref="InputActionAsset"/>, the clone will <em>not</em>
/// be. It will be a free-standing action map and <see cref="asset"/> will be <c>null</c>.
///
/// Note that the IDs for the map itself as well as for its <see cref="actions"/> and
/// <see cref="bindings"/> are not copied. Instead, new IDs will be assigned. Also, callbacks
/// installed on actions or on the map itself will not be copied over.
/// </remarks>
public InputActionMap Clone()
{
Debug.Assert(m_SingletonAction == null, "Internal (hidden) action maps of singleton actions should not be cloned");
var clone = new InputActionMap
{
m_Name = m_Name
};
// Clone actions.
if (m_Actions != null)
{
var actionCount = m_Actions.Length;
var actions = new InputAction[actionCount];
for (var i = 0; i < actionCount; ++i)
{
var original = m_Actions[i];
actions[i] = new InputAction
{
m_Name = original.m_Name,
m_ActionMap = clone,
m_Type = original.m_Type,
m_Interactions = original.m_Interactions,
m_Processors = original.m_Processors,
m_ExpectedControlType = original.m_ExpectedControlType,
};
}
clone.m_Actions = actions;
}
// Clone bindings.
if (m_Bindings != null)
{
var bindingCount = m_Bindings.Length;
var bindings = new InputBinding[bindingCount];
Array.Copy(m_Bindings, 0, bindings, 0, bindingCount);
for (var i = 0; i < bindingCount; ++i)
bindings[i].m_Id = default;
clone.m_Bindings = bindings;
}
return clone;
}
object ICloneable.Clone()
{
return Clone();
}
/// <summary>
/// Return <c>true</c> if the action map contains the given action.
/// </summary>
/// <param name="action">An input action. Can be <c>null</c>.</param>
/// <returns>True if the action map contains <paramref name="action"/>, false otherwise.</returns>
public bool Contains(InputAction action)
{
if (action == null)
return false;
return action.actionMap == this;
}
/// <summary>
/// Return a string representation of the action map useful for debugging.
/// </summary>
/// <returns>A string representation of the action map.</returns>
/// <remarks>
/// For unnamed action maps, this will always be <c>"&lt;Unnamed Action Map&gt;"</c>.
/// </remarks>
public override string ToString()
{
if (m_Asset != null)
return $"{m_Asset}:{m_Name}";
if (!string.IsNullOrEmpty(m_Name))
return m_Name;
return "<Unnamed Action Map>";
}
/// <summary>
/// Enumerate the actions in the map.
/// </summary>
/// <returns>An enumerator going over the actions in the map.</returns>
/// <remarks>
/// This method supports to generically iterate over the actions in a map. However, it will usually
/// lead to GC allocation. Iterating directly over <see cref="actions"/> avoids allocating GC memory.
/// </remarks>
public IEnumerator<InputAction> GetEnumerator()
{
return actions.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
// The state we persist is pretty much just a name, a flat list of actions, and a flat
// list of bindings. The rest is state we keep at runtime when a map is in use.
[SerializeField] internal string m_Name;
[SerializeField] internal string m_Id; // Can't serialize System.Guid and Unity's GUID is editor only.
[SerializeField] internal InputActionAsset m_Asset;
/// <summary>
/// List of actions in this map.
/// </summary>
[SerializeField] internal InputAction[] m_Actions;
/// <summary>
/// List of bindings in this map.
/// </summary>
/// <remarks>
/// For singleton actions, we ensure this is always the same as <see cref="InputAction.m_SingletonActionBindings"/>.
/// </remarks>
[SerializeField] internal InputBinding[] m_Bindings;
// These fields are caches. If m_Bindings is modified, these are thrown away
// and re-computed only if needed.
// NOTE: Because InputBindings are structs, m_BindingsForEachAction actually duplicates each binding
// (only in the case where m_Bindings has scattered references to actions).
////REVIEW: this will lead to problems when overrides are thrown into the mix
/// <summary>
/// For each entry in <see cref="m_Actions"/>, a slice of this array corresponds to the
/// action's bindings.
/// </summary>
/// <remarks>
/// Ideally, this array is the same as <see cref="m_Bindings"/> (the same as in literally reusing the
/// same array). However, we have no guarantee that <see cref="m_Bindings"/> is sorted by actions. In case it
/// isn't, we create a separate array with the bindings sorted by action and have each action reference
/// a slice through <see cref="InputAction.m_BindingsStartIndex"/> and <see cref="InputAction.m_BindingsCount"/>.
/// </remarks>
/// <seealso cref="SetUpPerActionControlAndBindingArrays"/>
[NonSerialized] private InputBinding[] m_BindingsForEachAction;
[NonSerialized] private InputControl[] m_ControlsForEachAction;
/// <summary>
/// Number of actions currently enabled in the map.
/// </summary>
/// <remarks>
/// This should only be written to by <see cref="InputActionState"/>.
/// </remarks>
[NonSerialized] internal int m_EnabledActionsCount;
// Action maps that are created internally by singleton actions to hold their data
// are never exposed and never serialized so there is no point allocating an m_Actions
// array.
[NonSerialized] internal InputAction m_SingletonAction;
[NonSerialized] internal int m_MapIndexInState = InputActionState.kInvalidIndex;
/// <summary>
/// Current execution state.
/// </summary>
/// <remarks>
/// Initialized when map (or any action in it) is first enabled.
/// </remarks>
[NonSerialized] internal InputActionState m_State;
[NonSerialized] internal InputBinding? m_BindingMask;
[NonSerialized] private Flags m_Flags;
[NonSerialized] internal int m_ParameterOverridesCount;
[NonSerialized] internal InputActionRebindingExtensions.ParameterOverride[] m_ParameterOverrides;
[NonSerialized] internal DeviceArray m_Devices;
[NonSerialized] internal CallbackArray<Action<InputAction.CallbackContext>> m_ActionCallbacks;
[NonSerialized] internal Dictionary<string, int> m_ActionIndexByNameOrId;
private bool needToResolveBindings
{
get => (m_Flags & Flags.NeedToResolveBindings) != 0;
set
{
if (value)
m_Flags |= Flags.NeedToResolveBindings;
else
m_Flags &= ~Flags.NeedToResolveBindings;
}
}
private bool bindingResolutionNeedsFullReResolve
{
get => (m_Flags & Flags.BindingResolutionNeedsFullReResolve) != 0;
set
{
if (value)
m_Flags |= Flags.BindingResolutionNeedsFullReResolve;
else
m_Flags &= ~Flags.BindingResolutionNeedsFullReResolve;
}
}
private bool controlsForEachActionInitialized
{
get => (m_Flags & Flags.ControlsForEachActionInitialized) != 0;
set
{
if (value)
m_Flags |= Flags.ControlsForEachActionInitialized;
else
m_Flags &= ~Flags.ControlsForEachActionInitialized;
}
}
private bool bindingsForEachActionInitialized
{
get => (m_Flags & Flags.BindingsForEachActionInitialized) != 0;
set
{
if (value)
m_Flags |= Flags.BindingsForEachActionInitialized;
else
m_Flags &= ~Flags.BindingsForEachActionInitialized;
}
}
[Flags]
private enum Flags
{
NeedToResolveBindings = 1 << 0,
BindingResolutionNeedsFullReResolve = 1 << 1,
ControlsForEachActionInitialized = 1 << 2,
BindingsForEachActionInitialized = 1 << 3,
}
internal static int s_DeferBindingResolution;
internal struct DeviceArray
{
private bool m_HaveValue;
private int m_DeviceCount;
private InputDevice[] m_DeviceArray; // May have extra capacity; we won't let go once allocated.
public int IndexOf(InputDevice device)
{
return m_DeviceArray.IndexOfReference(device, m_DeviceCount);
}
public bool Remove(InputDevice device)
{
var index = IndexOf(device);
if (index < 0)
return false;
m_DeviceArray.EraseAtWithCapacity(ref m_DeviceCount, index);
return true;
}
public ReadOnlyArray<InputDevice>? Get()
{
if (!m_HaveValue)
return null;
return new ReadOnlyArray<InputDevice>(m_DeviceArray, 0, m_DeviceCount);
}
public bool Set(ReadOnlyArray<InputDevice>? devices)
{
if (!devices.HasValue)
{
if (!m_HaveValue)
return false; // No change.
if (m_DeviceCount > 0)
Array.Clear(m_DeviceArray, 0, m_DeviceCount);
m_DeviceCount = 0;
m_HaveValue = false;
}
else
{
// See if the array actually changes content. Avoids re-resolving when there
// is no need to.
var array = devices.Value;
if (m_HaveValue && array.Count == m_DeviceCount && array.HaveEqualReferences(m_DeviceArray, m_DeviceCount))
return false;
if (m_DeviceCount > 0)
m_DeviceArray.Clear(ref m_DeviceCount);
m_HaveValue = true;
m_DeviceCount = 0;
ArrayHelpers.AppendListWithCapacity(ref m_DeviceArray, ref m_DeviceCount, array);
}
return true;
}
}
/// <summary>
/// Return the list of bindings for just the given actions.
/// </summary>
/// <param name="action"></param>
/// <returns></returns>
/// <remarks>
/// The bindings for a single action may be contiguous in <see cref="m_Bindings"/> or may be scattered
/// around. We don't keep persistent storage for these and instead set up a transient
/// array if and when bindings are queried directly from an action. In the simple case,
/// we don't even need a separate array but rather just need to find out which slice in the
/// bindings array corresponds to which action.
///
/// NOTE: Bindings for individual actions aren't queried by the system itself during normal
/// runtime operation so we only do this for cases where the user asks for the
/// information. If the user never asks for bindings or controls on a per-action basis,
/// none of this data gets initialized.
/// </remarks>
internal ReadOnlyArray<InputBinding> GetBindingsForSingleAction(InputAction action)
{
Debug.Assert(action != null, "Action cannot be null");
Debug.Assert(action.m_ActionMap == this, "Action must be in action map");
Debug.Assert(!action.isSingletonAction || m_SingletonAction == action, "Action is not a singleton action");
// See if we need to refresh.
if (!bindingsForEachActionInitialized)
SetUpPerActionControlAndBindingArrays();
return new ReadOnlyArray<InputBinding>(m_BindingsForEachAction, action.m_BindingsStartIndex,
action.m_BindingsCount);
}
internal ReadOnlyArray<InputControl> GetControlsForSingleAction(InputAction action)
{
Debug.Assert(m_State != null);
Debug.Assert(m_MapIndexInState != InputActionState.kInvalidIndex);
Debug.Assert(m_Actions != null);
Debug.Assert(action != null);
Debug.Assert(action.m_ActionMap == this);
Debug.Assert(!action.isSingletonAction || m_SingletonAction == action);
if (!controlsForEachActionInitialized)
SetUpPerActionControlAndBindingArrays();
return new ReadOnlyArray<InputControl>(m_ControlsForEachAction, action.m_ControlStartIndex,
action.m_ControlCount);
}
/// <summary>
/// Collect data from <see cref="m_Bindings"/> and <see cref="m_Actions"/> such that we can
/// we can cleanly expose it from <see cref="InputAction.bindings"/> and <see cref="InputAction.controls"/>.
/// </summary>
/// <remarks>
/// We set up per-action caches the first time their information is requested. Internally, we do not
/// use those arrays and thus they will not get set up by default.
///
/// Note that it is important to allow to call this method at a point where we have not resolved
/// controls yet (i.e. <see cref="m_State"/> is <c>null</c>). Otherwise, using <see cref="InputAction.bindings"/>
/// may trigger a control resolution which would be surprising.
/// </remarks>
private unsafe void SetUpPerActionControlAndBindingArrays()
{
// Handle case where we don't have any bindings.
if (m_Bindings == null)
{
m_ControlsForEachAction = null;
m_BindingsForEachAction = null;
controlsForEachActionInitialized = true;
bindingsForEachActionInitialized = true;
return;
}
if (m_SingletonAction != null)
{
// Dead simple case: map is internally owned by action. The entire
// list of bindings is specific to the action.
Debug.Assert(m_Bindings == m_SingletonAction.m_SingletonActionBindings,
"For singleton action, bindings array must match that of the action");
m_BindingsForEachAction = m_Bindings;
m_ControlsForEachAction = m_State?.controls;
m_SingletonAction.m_BindingsStartIndex = 0;
m_SingletonAction.m_BindingsCount = m_Bindings.Length;
m_SingletonAction.m_ControlStartIndex = 0;
m_SingletonAction.m_ControlCount = m_State?.totalControlCount ?? 0;
// Only complication, InputActionState allows a control to appear multiple times
// on the same action and InputAction.controls[] doesn't.
if (m_ControlsForEachAction.HaveDuplicateReferences(0, m_SingletonAction.m_ControlCount))
{
var numControls = 0;
var controls = new InputControl[m_SingletonAction.m_ControlCount];
for (var i = 0; i < m_SingletonAction.m_ControlCount; ++i)
{
if (!controls.ContainsReference(m_ControlsForEachAction[i]))
{
controls[numControls] = m_ControlsForEachAction[i];
++numControls;
}
}
m_ControlsForEachAction = controls;
m_SingletonAction.m_ControlCount = numControls;
}
}
else
{
////REVIEW: now that we have per-action binding information in UnmanagedMemory, this here can likely be done more easily
// Go through all bindings and slice them out to individual actions.
Debug.Assert(m_Actions != null, "Action map is associated with action but action map has no array of actions"); // Action isn't a singleton so this has to be true.
var mapIndices = m_State?.FetchMapIndices(this) ?? new InputActionState.ActionMapIndices();
// Reset state on each action. Important if we have actions that are no longer
// referred to by bindings.
for (var i = 0; i < m_Actions.Length; ++i)
{
var action = m_Actions[i];
action.m_BindingsCount = 0;
action.m_BindingsStartIndex = -1;
action.m_ControlCount = 0;
action.m_ControlStartIndex = -1;
}
// Count bindings on each action.
// After this loop, we can have one of two situations:
// 1) The bindings for any action X start at some index N and occupy the next m_BindingsCount slots.
// 2) The bindings for some or all actions are scattered across non-contiguous chunks of the array.
var bindingCount = m_Bindings.Length;
for (var i = 0; i < bindingCount; ++i)
{
var action = FindAction(m_Bindings[i].action);
if (action != null)
++action.m_BindingsCount;
}
// Collect the bindings and controls and bundle them into chunks.
var newBindingsArrayIndex = 0;
if (m_State != null && (m_ControlsForEachAction == null || m_ControlsForEachAction.Length != mapIndices.controlCount))
{
if (mapIndices.controlCount == 0)
m_ControlsForEachAction = null;
else
m_ControlsForEachAction = new InputControl[mapIndices.controlCount];
}
InputBinding[] newBindingsArray = null;
var currentControlIndex = 0;
for (var currentBindingIndex = 0; currentBindingIndex < m_Bindings.Length;)
{
var currentAction = FindAction(m_Bindings[currentBindingIndex].action);
if (currentAction == null || currentAction.m_BindingsStartIndex != -1)
{
// Skip bindings not targeting an action or bindings we have already processed
// (when gathering bindings for a single actions scattered across the array we may have
// skipping ahead).
++currentBindingIndex;
continue;
}
// Bindings for current action start at current index.
currentAction.m_BindingsStartIndex = newBindingsArray != null
? newBindingsArrayIndex
: currentBindingIndex;
currentAction.m_ControlStartIndex = currentControlIndex;
// Collect all bindings for the action. As part of that, also copy the controls
// for each binding over to m_ControlsForEachAction.
var bindingCountForCurrentAction = currentAction.m_BindingsCount;
Debug.Assert(bindingCountForCurrentAction > 0);
var sourceBindingToCopy = currentBindingIndex;
for (var i = 0; i < bindingCountForCurrentAction; ++i)
{
// See if we've come across a binding that doesn't belong to our currently looked at action.
if (FindAction(m_Bindings[sourceBindingToCopy].action) != currentAction)
{
// Yes, we have. Means the bindings for our actions are scattered in m_Bindings and
// we need to collect them.
// If this is the first action that has its bindings scattered around, switch to
// having a separate bindings array and copy whatever bindings we already processed
// over to it.
if (newBindingsArray == null)
{
newBindingsArray = new InputBinding[m_Bindings.Length];
newBindingsArrayIndex = sourceBindingToCopy;
Array.Copy(m_Bindings, 0, newBindingsArray, 0, sourceBindingToCopy);
}
// Find the next binding belonging to the action. We've counted bindings for
// the action in the previous pass so we know exactly how many bindings we
// can expect.
do
{
++sourceBindingToCopy;
Debug.Assert(sourceBindingToCopy < m_Bindings.Length);
}
while (FindAction(m_Bindings[sourceBindingToCopy].action) != currentAction);
}
else if (currentBindingIndex == sourceBindingToCopy)
++currentBindingIndex;
// Copy binding over to new bindings array, if need be.
if (newBindingsArray != null)
newBindingsArray[newBindingsArrayIndex++] = m_Bindings[sourceBindingToCopy];
// Copy controls for binding, if we have resolved controls already and if the
// binding isn't a composite (they refer to the controls from all of their part bindings
// but do not really resolve to controls themselves).
if (m_State != null && !m_Bindings[sourceBindingToCopy].isComposite)
{
ref var bindingState = ref m_State.bindingStates[mapIndices.bindingStartIndex + sourceBindingToCopy];
var controlCountForBinding = bindingState.controlCount;
if (controlCountForBinding > 0)
{
// Internally, we allow several bindings on a given action to resolve to the same control.
// Externally, however, InputAction.controls[] is a set and thus should not contain duplicates.
// So, instead of just doing a straight copy here, we copy controls one by one.
var controlStartIndexForBinding = bindingState.controlStartIndex;
for (var n = 0; n < controlCountForBinding; ++n)
{
var control = m_State.controls[controlStartIndexForBinding + n];
if (!m_ControlsForEachAction.ContainsReference(currentAction.m_ControlStartIndex,
currentAction.m_ControlCount, control))
{
m_ControlsForEachAction[currentControlIndex] = control;
++currentControlIndex;
++currentAction.m_ControlCount;
}
}
}
}
++sourceBindingToCopy;
}
}
if (newBindingsArray == null)
{
// Bindings are already clustered by action in m_Bindings
// so we can just stick to having one array only.
m_BindingsForEachAction = m_Bindings;
}
else
{
// Bindings are not clustered by action in m_Bindings so
// we had to allocate a separate array where the bindings are sorted.
m_BindingsForEachAction = newBindingsArray;
}
}
controlsForEachActionInitialized = true;
bindingsForEachActionInitialized = true;
}
internal void OnWantToChangeSetup()
{
if (asset != null)
{
foreach (var assetMap in asset.actionMaps)
if (assetMap.enabled)
throw new InvalidOperationException(
$"Cannot add, remove, or change elements of InputActionAsset {asset} while one or more of its actions are enabled");
}
else if (enabled)
{
throw new InvalidOperationException(
$"Cannot add, remove, or change elements of InputActionMap {this} while one or more of its actions are enabled");
}
}
internal void OnSetupChanged()
{
if (m_Asset != null)
{
m_Asset.MarkAsDirty();
foreach (var map in m_Asset.actionMaps)
map.m_State = default;
}
else
{
m_State = default;
}
ClearCachedActionData();
LazyResolveBindings(fullResolve: true);
}
internal void OnBindingModified()
{
ClearCachedActionData();
LazyResolveBindings(fullResolve: true);
}
////TODO: re-use allocations such that only grow the arrays and hit zero GC allocs when we already have enough memory
internal void ClearCachedActionData(bool onlyControls = false)
{
if (!onlyControls)
{
bindingsForEachActionInitialized = false;
m_BindingsForEachAction = default;
m_ActionIndexByNameOrId = default;
}
controlsForEachActionInitialized = false;
m_ControlsForEachAction = default;
}
internal void GenerateId()
{
m_Id = Guid.NewGuid().ToString();
}
/// <summary>
/// Resolve bindings right away if we have to. Otherwise defer it to when we next need
/// the bindings.
/// </summary>
internal bool LazyResolveBindings(bool fullResolve)
{
// Clear cached controls for actions. Don't need to necessarily clear m_BindingsForEachAction.
m_ControlsForEachAction = null;
controlsForEachActionInitialized = false;
// If we haven't had to resolve bindings yet, we can wait until when we
// actually have to.
if (m_State == null)
return false;
// We used to defer binding resolution here in case the map had no enabled actions. That behavior,
// however, leads to rather unpredictable BoundControlsChanged notifications (especially for
// rebinding UIs), so now we just always re-resolve anything that ever had an InputActionState
// created. Unfortunately, this can lead to some unnecessary re-resolving.
needToResolveBindings = true;
bindingResolutionNeedsFullReResolve |= fullResolve;
if (s_DeferBindingResolution > 0)
return false;
// Have to do it straight away.
ResolveBindings();
return true;
}
internal bool ResolveBindingsIfNecessary()
{
// NOTE: We only check locally for the current map here. When there are multiple maps
// in an asset, we may have maps that require re-resolution while others don't.
// We only resolve if a map is used that needs resolution to happen. Note that
// this will still resolve bindings for *all* maps in the asset.
if (m_State == null || needToResolveBindings)
{
if (m_State != null && m_State.isProcessingControlStateChange)
{
Debug.Assert(s_DeferBindingResolution > 0, "While processing control state changes, binding resolution should be suppressed");
return false;
}
ResolveBindings();
return true;
}
return false;
}
// We have three different starting scenarios for binding resolution:
//
// (1) From scratch.
// There is no InputActionState and we resolve everything from a completely fresh start. This happens when
// we either have not resolved bindings at all yet or when something touches the action setup (e.g. adds
// or removes an action or binding) and we thus throw away the existing InputActionState.
// NOTE:
// * Actions can be in enabled state.
// * No action can be in an in-progress state (since binding resolution is needed for actions to
// be processed, no action processing can have happened yet)
//
// (2) From an existing InputActionState when a device has been added or removed.
// There is an InputActionState and the action setup (maps, actions, bindings, binding masks) has not changed. However,
// the set of devices usable with the action has changed (either the per-asset/map device list or the global
// list, if we're using it).
// NOTE:
// * Actions can be in enabled state.
// * Actions *can* be in an in-progress state.
// IF the control currently driving the action is on a device that is no longer usable with the action, the
// action is CANCELLED. OTHERWISE, the action will be left as is and keep being in progress from its active control.
// * A device CONFIGURATION change will NOT go down this path (e.g. changing the Keyboard layout). This is because
// any binding path involving display names may now resolve to different controls -- which may impact currently
// active controls of in-progress actions.
// * A change in the USAGES of a device will NOT go down this path either. This is for the same reason -- i.e. an
// active control may no longer match the binding path it matched before. If, for example, we switch the left-hand
// and right-hand roles of two controllers, will will go down path (3) and not (2).
//
// (3) From an existing InputActionState on any other change not covered before.
// There is an InputActionState and the action setup (maps, actions, bindings, binding masks) may have changed. Also,
// any change may have happened in the set of usable devices and targeted controls. This includes binding overrides
// having been applied.
// NOTE:
// * Action can be in enabled state.
// * Actions *can* be in an in-progress state.
// Any such action will be CANCELLED as part of the re-resolution process.
//
// Both (1) and (3) are considered a "full resolve". (2) is not.
/// <summary>
/// Resolve all bindings to their controls and also add any action interactions
/// from the bindings.
/// </summary>
/// <remarks>
/// This is the core method of action binding resolution. All binding resolution goes through here.
///
/// The best way is for binding resolution to happen once for each action map at the beginning of the game
/// and to then enable and disable the maps as needed. However, the system will also re-resolve
/// bindings if the control setup in the system changes (i.e. if devices are added or removed
/// or if layouts in the system are changed).
///
/// Bindings can be re-resolved while actions are enabled. This happens changing device or binding
/// masks on action maps or assets (<see cref="devices"/>, <see cref="bindingMask"/>, <see cref="InputAction.bindingMask"/>,
/// <see cref="InputActionAsset.devices"/>, <see cref="InputActionAsset.bindingMask"/>). Doing so will
/// not affect the enable state of actions and, as much as possible, will try to take current
/// action states across.
/// </remarks>
internal void ResolveBindings()
{
// Make sure that if we trigger callbacks as part of disabling and re-enabling actions,
// we don't trigger a re-resolve while we're already resolving bindings.
using (InputActionRebindingExtensions.DeferBindingResolution())
{
// In case we have actions that are currently enabled, we temporarily retain the
// UnmanagedMemory of our InputActionState so that we can sync action states after
// we have re-resolved bindings.
var oldMemory = new InputActionState.UnmanagedMemory();
try
{
OneOrMore<InputActionMap, ReadOnlyArray<InputActionMap>> actionMaps;
// Start resolving.
var resolver = new InputBindingResolver();
// If we're part of an asset, we share state and thus binding resolution with
// all maps in the asset.
var needFullResolve = m_State == null;
if (m_Asset != null)
{
actionMaps = m_Asset.actionMaps;
Debug.Assert(actionMaps.Count > 0, "Asset referred to by action map does not have action maps");
// If there's a binding mask set on the asset, apply it.
resolver.bindingMask = m_Asset.m_BindingMask;
foreach (var map in actionMaps)
{
needFullResolve |= map.bindingResolutionNeedsFullReResolve;
map.needToResolveBindings = false;
map.bindingResolutionNeedsFullReResolve = false;
map.controlsForEachActionInitialized = false;
}
}
else
{
// Standalone action map (possibly a hidden one created for a singleton action).
// Gets its own private state.
actionMaps = this;
needFullResolve |= bindingResolutionNeedsFullReResolve;
needToResolveBindings = false;
bindingResolutionNeedsFullReResolve = false;
controlsForEachActionInitialized = false;
}
// If we already have a state, re-use the arrays we have already allocated.
// NOTE: We will install the arrays on the very same InputActionState instance below. In the
// case where we didn't have to grow the arrays, we should end up with zero GC allocations
// here.
var hasEnabledActions = false;
InputControlList<InputControl> activeControls = default;
if (m_State != null)
{
// Grab a clone of the current memory. We clone because disabling all the actions
// in the map will alter the memory state and we want the state before we start
// touching it.
oldMemory = m_State.memory.Clone();
m_State.PrepareForBindingReResolution(needFullResolve, ref activeControls, ref hasEnabledActions);
// Reuse the arrays we have so that we can avoid managed memory allocations, if possible.
resolver.StartWithPreviousResolve(m_State, isFullResolve: needFullResolve);
// Throw away old memory.
m_State.memory.Dispose();
}
// Resolve all maps in the asset.
foreach (var map in actionMaps)
resolver.AddActionMap(map);
// Install state.
if (m_State == null)
{
m_State = new InputActionState();
m_State.Initialize(resolver);
}
else
{
m_State.ClaimDataFrom(resolver);
}
if (m_Asset != null)
{
foreach (var map in actionMaps)
map.m_State = m_State;
m_Asset.m_SharedStateForAllMaps = m_State;
}
m_State.FinishBindingResolution(hasEnabledActions, oldMemory, activeControls, isFullResolve: needFullResolve);
}
finally
{
oldMemory.Dispose();
}
}
}
/// <inheritdoc/>
public int FindBinding(InputBinding mask, out InputAction action)
{
var index = FindBindingRelativeToMap(mask);
if (index == -1)
{
action = null;
return -1;
}
action = m_SingletonAction ?? FindAction(bindings[index].action);
return action.BindingIndexOnMapToBindingIndexOnAction(index);
}
/// <summary>
/// Find the index of the first binding that matches the given mask.
/// </summary>
/// <param name="mask">A binding. See <see cref="InputBinding.Matches"/> for details.</param>
/// <returns>Index into <see cref="InputAction.bindings"/> of <paramref name="action"/> of the binding
/// that matches <paramref name="mask"/>. If no binding matches, will return -1.</returns>
/// <remarks>
/// For details about matching bindings by a mask, see <see cref="InputBinding.Matches"/>.
///
/// <example>
/// <code>
/// var index = playerInput.actions.FindBindingRelativeToMap(
/// new InputBinding { path = "&lt;Gamepad&gt;/buttonSouth" });
///
/// if (index != -1)
/// Debug.Log($"Found binding with index {index}");
/// </code>
/// </example>
/// </remarks>
/// <seealso cref="InputBinding.Matches"/>
/// <seealso cref="bindings"/>
internal int FindBindingRelativeToMap(InputBinding mask)
{
var bindings = m_Bindings;
var bindingsCount = bindings.LengthSafe();
for (var i = 0; i < bindingsCount; ++i)
{
ref var binding = ref bindings[i];
if (mask.Matches(ref binding))
return i;
}
return -1;
}
#region Serialization
////REVIEW: when GetParameter/SetParameter is coming, should these also be considered part of binding override data?
[Serializable]
internal struct BindingOverrideListJson
{
public List<BindingOverrideJson> bindings;
}
[Serializable]
internal struct BindingOverrideJson
{
// We save both the "map/action" path of the action as well as the binding ID.
// This gives us two avenues into finding our target binding to apply the override
// to.
public string action;
public string id;
public string path;
public string interactions;
public string processors;
public static BindingOverrideJson FromBinding(InputBinding binding)
{
return new BindingOverrideJson
{
action = binding.action,
id = binding.m_Id,
path = binding.overridePath,
interactions = binding.overrideInteractions,
processors = binding.overrideProcessors,
};
}
}
// Action maps are serialized in two different ways. For storage as imported assets in Unity's Library/ folder
// and in player data and asset bundles as well as for surviving domain reloads, InputActionMaps are serialized
// directly by Unity. For storage as source data in user projects, InputActionMaps are serialized indirectly
// as JSON by setting up a separate set of structs that are then read and written using Unity's JSON serializer.
[Serializable]
internal struct BindingJson
{
public string name;
public string id;
public string path;
public string interactions;
public string processors;
public string groups;
public string action;
public bool isComposite;
public bool isPartOfComposite;
public InputBinding ToBinding()
{
return new InputBinding
{
name = string.IsNullOrEmpty(name) ? null : name,
m_Id = string.IsNullOrEmpty(id) ? null : id,
path = path,
action = string.IsNullOrEmpty(action) ? null : action,
interactions = string.IsNullOrEmpty(interactions) ? null : interactions,
processors = string.IsNullOrEmpty(processors) ? null : processors,
groups = string.IsNullOrEmpty(groups) ? null : groups,
isComposite = isComposite,
isPartOfComposite = isPartOfComposite,
};
}
public static BindingJson FromBinding(ref InputBinding binding)
{
return new BindingJson
{
name = binding.name,
id = binding.m_Id,
path = binding.path,
action = binding.action,
interactions = binding.interactions,
processors = binding.processors,
groups = binding.groups,
isComposite = binding.isComposite,
isPartOfComposite = binding.isPartOfComposite,
};
}
}
// Backwards-compatible read format.
[Serializable]
internal struct ReadActionJson
{
public string name;
public string type;
public string id;
public string expectedControlType;
public string expectedControlLayout;
public string processors;
public string interactions;
public bool passThrough;
public bool initialStateCheck;
// Bindings can either be on the action itself (in which case the action name
// for each binding is implied) or listed separately in the action file.
public BindingJson[] bindings;
public InputAction ToAction(string actionName = null)
{
// FormerlySerializedAs doesn't seem to work as expected so manually
// handling the rename here.
if (!string.IsNullOrEmpty(expectedControlLayout))
expectedControlType = expectedControlLayout;
// Determine type.
InputActionType actionType = default;
if (!string.IsNullOrEmpty(type))
actionType = (InputActionType)Enum.Parse(typeof(InputActionType), type, true);
else
{
// Old format that doesn't have type. Try to infer from settings.
if (passThrough)
actionType = InputActionType.PassThrough;
else if (initialStateCheck)
actionType = InputActionType.Value;
else if (!string.IsNullOrEmpty(expectedControlType) &&
(expectedControlType == "Button" || expectedControlType == "Key"))
actionType = InputActionType.Button;
}
return new InputAction(actionName ?? name, actionType)
{
m_Id = string.IsNullOrEmpty(id) ? null : id,
m_ExpectedControlType = !string.IsNullOrEmpty(expectedControlType)
? expectedControlType
: null,
m_Processors = processors,
m_Interactions = interactions,
wantsInitialStateCheck = initialStateCheck,
};
}
}
[Serializable]
internal struct WriteActionJson
{
public string name;
public string type;
public string id;
public string expectedControlType;
public string processors;
public string interactions;
public bool initialStateCheck;
public static WriteActionJson FromAction(InputAction action)
{
return new WriteActionJson
{
name = action.m_Name,
type = action.m_Type.ToString(),
id = action.m_Id,
expectedControlType = action.m_ExpectedControlType,
processors = action.processors,
interactions = action.interactions,
initialStateCheck = action.wantsInitialStateCheck,
};
}
}
[Serializable]
internal struct ReadMapJson
{
public string name;
public string id;
public ReadActionJson[] actions;
public BindingJson[] bindings;
}
[Serializable]
internal struct WriteMapJson
{
public string name;
public string id;
public WriteActionJson[] actions;
public BindingJson[] bindings;
public static WriteMapJson FromMap(InputActionMap map)
{
WriteActionJson[] jsonActions = null;
BindingJson[] jsonBindings = null;
var actions = map.m_Actions;
if (actions != null)
{
var actionCount = actions.Length;
jsonActions = new WriteActionJson[actionCount];
for (var i = 0; i < actionCount; ++i)
jsonActions[i] = WriteActionJson.FromAction(actions[i]);
}
var bindings = map.m_Bindings;
if (bindings != null)
{
var bindingCount = bindings.Length;
jsonBindings = new BindingJson[bindingCount];
for (var i = 0; i < bindingCount; ++i)
jsonBindings[i] = BindingJson.FromBinding(ref bindings[i]);
}
return new WriteMapJson
{
name = map.name,
id = map.id.ToString(),
actions = jsonActions,
bindings = jsonBindings,
};
}
}
// We write JSON in a less flexible format than we allow to be read. JSON files
// we read can just be flat lists of actions with the map name being contained in
// the action name and containing their own bindings directly. JSON files we write
// go map by map and separate bindings and actions.
[Serializable]
internal struct WriteFileJson
{
public WriteMapJson[] maps;
public static WriteFileJson FromMap(InputActionMap map)
{
return new WriteFileJson
{
maps = new[] {WriteMapJson.FromMap(map)}
};
}
public static WriteFileJson FromMaps(IEnumerable<InputActionMap> maps)
{
var mapCount = maps.Count();
if (mapCount == 0)
return new WriteFileJson();
var mapsJson = new WriteMapJson[mapCount];
var index = 0;
foreach (var map in maps)
mapsJson[index++] = WriteMapJson.FromMap(map);
return new WriteFileJson {maps = mapsJson};
}
}
// A JSON representation of one or more sets of actions.
// Contains a list of actions. Each action may specify the set it belongs to
// as part of its name ("set/action").
[Serializable]
internal struct ReadFileJson
{
public ReadActionJson[] actions;
public ReadMapJson[] maps;
public InputActionMap[] ToMaps()
{
var mapList = new List<InputActionMap>();
var actionLists = new List<List<InputAction>>();
var bindingLists = new List<List<InputBinding>>();
// Process actions listed at toplevel.
var actionCount = actions?.Length ?? 0;
for (var i = 0; i < actionCount; ++i)
{
var jsonAction = actions[i];
if (string.IsNullOrEmpty(jsonAction.name))
throw new InvalidOperationException($"Action number {i + 1} has no name");
////REVIEW: make sure all action names are unique?
// Determine name of action map.
string mapName = null;
var actionName = jsonAction.name;
var indexOfFirstSlash = actionName.IndexOf('/');
if (indexOfFirstSlash != -1)
{
mapName = actionName.Substring(0, indexOfFirstSlash);
actionName = actionName.Substring(indexOfFirstSlash + 1);
if (string.IsNullOrEmpty(actionName))
throw new InvalidOperationException(
$"Invalid action name '{jsonAction.name}' (missing action name after '/')");
}
// Try to find existing map.
InputActionMap map = null;
var mapIndex = 0;
for (; mapIndex < mapList.Count; ++mapIndex)
{
if (string.Compare(mapList[mapIndex].name, mapName, StringComparison.InvariantCultureIgnoreCase) == 0)
{
map = mapList[mapIndex];
break;
}
}
// Create new map if it's the first action in the map.
if (map == null)
{
// NOTE: No map IDs supported on this path.
map = new InputActionMap(mapName);
mapIndex = mapList.Count;
mapList.Add(map);
actionLists.Add(new List<InputAction>());
bindingLists.Add(new List<InputBinding>());
}
// Create action.
var action = jsonAction.ToAction(actionName);
actionLists[mapIndex].Add(action);
// Add bindings.
if (jsonAction.bindings != null)
{
var bindingsForMap = bindingLists[mapIndex];
for (var n = 0; n < jsonAction.bindings.Length; ++n)
{
var jsonBinding = jsonAction.bindings[n];
var binding = jsonBinding.ToBinding();
binding.action = action.m_Name;
bindingsForMap.Add(binding);
}
}
}
// Process maps.
var mapCount = maps?.Length ?? 0;
for (var i = 0; i < mapCount; ++i)
{
var jsonMap = maps[i];
var mapName = jsonMap.name;
if (string.IsNullOrEmpty(mapName))
throw new InvalidOperationException($"Map number {i + 1} has no name");
// Try to find existing map.
InputActionMap map = null;
var mapIndex = 0;
for (; mapIndex < mapList.Count; ++mapIndex)
{
if (string.Compare(mapList[mapIndex].name, mapName, StringComparison.InvariantCultureIgnoreCase) == 0)
{
map = mapList[mapIndex];
break;
}
}
// Create new map if we haven't seen it before.
if (map == null)
{
map = new InputActionMap(mapName)
{
m_Id = string.IsNullOrEmpty(jsonMap.id) ? null : jsonMap.id
};
mapIndex = mapList.Count;
mapList.Add(map);
actionLists.Add(new List<InputAction>());
bindingLists.Add(new List<InputBinding>());
}
// Process actions in map.
var actionCountInMap = jsonMap.actions?.Length ?? 0;
for (var n = 0; n < actionCountInMap; ++n)
{
var jsonAction = jsonMap.actions[n];
if (string.IsNullOrEmpty(jsonAction.name))
throw new InvalidOperationException($"Action number {i + 1} in map '{mapName}' has no name");
// Create action.
var action = jsonAction.ToAction();
actionLists[mapIndex].Add(action);
// Add bindings.
if (jsonAction.bindings != null)
{
var bindingList = bindingLists[mapIndex];
for (var k = 0; k < jsonAction.bindings.Length; ++k)
{
var jsonBinding = jsonAction.bindings[k];
var binding = jsonBinding.ToBinding();
binding.action = action.m_Name;
bindingList.Add(binding);
}
}
}
// Process bindings in map.
var bindingCountInMap = jsonMap.bindings?.Length ?? 0;
var bindingsForMap = bindingLists[mapIndex];
for (var n = 0; n < bindingCountInMap; ++n)
{
var jsonBinding = jsonMap.bindings[n];
var binding = jsonBinding.ToBinding();
bindingsForMap.Add(binding);
}
}
// Finalize arrays.
for (var i = 0; i < mapList.Count; ++i)
{
var map = mapList[i];
var actionArray = actionLists[i].ToArray();
var bindingArray = bindingLists[i].ToArray();
map.m_Actions = actionArray;
map.m_Bindings = bindingArray;
for (var n = 0; n < actionArray.Length; ++n)
{
var action = actionArray[n];
action.m_ActionMap = map;
}
}
return mapList.ToArray();
}
}
/// <summary>
/// Load one or more action maps from JSON.
/// </summary>
/// <param name="json">JSON representation of the action maps. Can be empty.</param>
/// <exception cref="ArgumentNullException"><paramref name="json"/> is <c>null</c>.</exception>
/// <returns>The array of action maps (may be empty) read from the given JSON string. Will not be
/// <c>null</c>.</returns>
/// <remarks>
/// Note that the format used by this method is different than what you
/// get if you call <c>JsonUtility.ToJson</c> on an InputActionMap instance. In other
/// words, the JSON format is not identical to the Unity serialized object representation
/// of the asset.
///
/// <example>
/// <code>
/// var maps = InputActionMap.FromJson(@"
/// {
/// ""maps"" : [
/// {
/// ""name"" : ""Gameplay"",
/// ""actions"" : [
/// { ""name"" : ""fire"", ""type"" : ""button"" }
/// ],
/// ""bindings"" : [
/// { ""path"" : ""&lt;Gamepad&gt;/leftTrigger"", ""action"" : ""fire"" }
/// ],
/// }
/// ]
/// }
/// ");
/// </code>
/// </example>
/// </remarks>
/// <seealso cref="InputActionAsset.FromJson"/>
/// <seealso cref="ToJson(IEnumerable{InputActionMap})"/>
public static InputActionMap[] FromJson(string json)
{
if (json == null)
throw new ArgumentNullException(nameof(json));
var fileJson = JsonUtility.FromJson<ReadFileJson>(json);
return fileJson.ToMaps();
}
/// <summary>
/// Convert a set of action maps to JSON format.
/// </summary>
/// <param name="maps">List of action maps to serialize.</param>
/// <exception cref="ArgumentNullException"><paramref name="maps"/> is <c>null</c>.</exception>
/// <returns>JSON representation of the given action maps.</returns>
/// <remarks>
/// The result of this method can be loaded with <see cref="FromJson"/>.
///
/// Note that the format used by this method is different than what you
/// get if you call <c>JsonUtility.ToJson</c> on an InputActionMap instance. In other
/// words, the JSON format is not identical to the Unity serialized object representation
/// of the asset.
/// </remarks>
/// <seealso cref="FromJson"/>
public static string ToJson(IEnumerable<InputActionMap> maps)
{
if (maps == null)
throw new ArgumentNullException(nameof(maps));
var fileJson = WriteFileJson.FromMaps(maps);
return JsonUtility.ToJson(fileJson, true);
}
/// <summary>
/// Convert the action map to JSON format.
/// </summary>
/// <returns>A JSON representation of the action map.</returns>
/// <remarks>
/// The result of this method can be loaded with <see cref="FromJson"/>.
///
/// Note that the format used by this method is different than what you
/// get if you call <c>JsonUtility.ToJson</c> on an InputActionMap instance. In other
/// words, the JSON format is not identical to the Unity serialized object representation
/// of the asset.
/// </remarks>
public string ToJson()
{
var fileJson = WriteFileJson.FromMap(this);
return JsonUtility.ToJson(fileJson, true);
}
/// <summary>
/// Called by Unity before the action map is serialized using Unity's
/// serialization system.
/// </summary>
public void OnBeforeSerialize()
{
}
/// <summary>
/// Called by Unity after the action map has been deserialized using Unity's
/// serialization system.
/// </summary>
public void OnAfterDeserialize()
{
m_State = null;
m_MapIndexInState = InputActionState.kInvalidIndex;
// Restore references of actions linking back to us.
if (m_Actions != null)
{
var actionCount = m_Actions.Length;
for (var i = 0; i < actionCount; ++i)
m_Actions[i].m_ActionMap = this;
}
// Make sure we don't retain any cached per-action data when using serialization
// to doctor around in action map configurations in the editor.
ClearCachedActionData();
ClearActionLookupTable();
}
#endregion
}
}