Firstborn/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/Debug.hlsl
Schaken-Mods b486678290 Library -Artifacts
Library -Artifacts
2023-03-28 12:24:16 -05:00

322 lines
14 KiB
HLSL

#ifndef UNITY_DEBUG_INCLUDED
#define UNITY_DEBUG_INCLUDED
// UX-verified colorblind-optimized debug colors, listed in order of increasing perceived "hotness"
#define DEBUG_COLORS_COUNT 12
#define kDebugColorBlack float4(0.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0, 1.0) // #000000
#define kDebugColorLightPurple float4(166.0 / 255.0, 70.0 / 255.0, 242.0 / 255.0, 1.0) // #A646F2
#define kDebugColorDeepBlue float4(0.0 / 255.0, 26.0 / 255.0, 221.0 / 255.0, 1.0) // #001ADD
#define kDebugColorSkyBlue float4(65.0 / 255.0, 152.0 / 255.0, 224.0 / 255.0, 1.0) // #4198E0
#define kDebugColorLightBlue float4(158.0 / 255.0, 228.0 / 255.0, 251.0 / 255.0, 1.0) // #1A1D21
#define kDebugColorTeal float4(56.0 / 255.0, 243.0 / 255.0, 176.0 / 255.0, 1.0) // #38F3B0
#define kDebugColorBrightGreen float4(168.0 / 255.0, 238.0 / 255.0, 46.0 / 255.0, 1.0) // #A8EE2E
#define kDebugColorBrightYellow float4(255.0 / 255.0, 253.0 / 255.0, 76.0 / 255.0, 1.0) // #FFFD4C
#define kDebugColorDarkYellow float4(255.0 / 255.0, 214.0 / 255.0, 0.0 / 255.0, 1.0) // #FFD600
#define kDebugColorOrange float4(253.0 / 255.0, 152.0 / 255.0, 0.0 / 255.0, 1.0) // #FD9800
#define kDebugColorBrightRed float4(255.0 / 255.0, 67.0 / 255.0, 51.0 / 255.0, 1.0) // #FF4333
#define kDebugColorDarkRed float4(132.0 / 255.0, 10.0 / 255.0, 54.0 / 255.0, 1.0) // #840A36
// Shadow cascade debug colors. Keep in sync with the ones in ShadowCascadeGUI.cs.
// Note: These colors are not 1:1 match to editor UI, in order to provide better contrast in the viewport.
#define kDebugColorShadowCascade0 float4(0.4, 0.4, 0.9, 1.0)
#define kDebugColorShadowCascade1 float4(0.4, 0.9, 0.4, 1.0)
#define kDebugColorShadowCascade2 float4(0.9, 0.9, 0.4, 1.0)
#define kDebugColorShadowCascade3 float4(0.9, 0.4, 0.4, 1.0)
// UX-verified colorblind-optimized "heat color gradient"
static const float4 kDebugColorGradient[DEBUG_COLORS_COUNT] = { kDebugColorBlack, kDebugColorLightPurple, kDebugColorDeepBlue,
kDebugColorSkyBlue, kDebugColorLightBlue, kDebugColorTeal, kDebugColorBrightGreen, kDebugColorBrightYellow,
kDebugColorDarkYellow, kDebugColorOrange, kDebugColorBrightRed, kDebugColorDarkRed };
#define TRANSPARENCY_OVERDRAW_COST 1.0
#define TRANSPARENCY_OVERDRAW_A 1.0
// Given an enum (represented by an int here), return a color.
// Use for DebugView of enum
real3 GetIndexColor(int index)
{
real3 outColor = real3(1.0, 0.0, 0.0);
if (index == 0)
outColor = real3(1.0, 0.5, 0.5);
else if (index == 1)
outColor = real3(0.5, 1.0, 0.5);
else if (index == 2)
outColor = real3(0.5, 0.5, 1.0);
else if (index == 3)
outColor = real3(1.0, 1.0, 0.5);
else if (index == 4)
outColor = real3(1.0, 0.5, 1.0);
else if (index == 5)
outColor = real3(0.5, 1.0, 1.0);
else if (index == 6)
outColor = real3(0.25, 0.75, 1.0);
else if (index == 7)
outColor = real3(1.0, 0.75, 0.25);
else if (index == 8)
outColor = real3(0.75, 1.0, 0.25);
else if (index == 9)
outColor = real3(0.75, 0.25, 1.0);
else if (index == 10)
outColor = real3(0.25, 1.0, 0.75);
else if (index == 11)
outColor = real3(0.75, 0.75, 0.25);
else if (index == 12)
outColor = real3(0.75, 0.25, 0.75);
else if (index == 13)
outColor = real3(0.25, 0.75, 0.75);
else if (index == 14)
outColor = real3(0.25, 0.25, 0.75);
else if (index == 15)
outColor = real3(0.75, 0.25, 0.25);
return outColor;
}
bool SampleDebugFont(int2 pixCoord, uint digit)
{
if (pixCoord.x < 0 || pixCoord.y < 0 || pixCoord.x >= 5 || pixCoord.y >= 9 || digit > 9)
return false;
#define PACK_BITS25(_x0,_x1,_x2,_x3,_x4,_x5,_x6,_x7,_x8,_x9,_x10,_x11,_x12,_x13,_x14,_x15,_x16,_x17,_x18,_x19,_x20,_x21,_x22,_x23,_x24) (_x0|(_x1<<1)|(_x2<<2)|(_x3<<3)|(_x4<<4)|(_x5<<5)|(_x6<<6)|(_x7<<7)|(_x8<<8)|(_x9<<9)|(_x10<<10)|(_x11<<11)|(_x12<<12)|(_x13<<13)|(_x14<<14)|(_x15<<15)|(_x16<<16)|(_x17<<17)|(_x18<<18)|(_x19<<19)|(_x20<<20)|(_x21<<21)|(_x22<<22)|(_x23<<23)|(_x24<<24))
#define _ 0
#define x 1
uint fontData[9][2] = {
{ PACK_BITS25(_,_,x,_,_, _,_,x,_,_, _,x,x,x,_, x,x,x,x,x, _,_,_,x,_), PACK_BITS25(x,x,x,x,x, _,x,x,x,_, x,x,x,x,x, _,x,x,x,_, _,x,x,x,_) },
{ PACK_BITS25(_,x,_,x,_, _,x,x,_,_, x,_,_,_,x, _,_,_,_,x, _,_,_,x,_), PACK_BITS25(x,_,_,_,_, x,_,_,_,x, _,_,_,_,x, x,_,_,_,x, x,_,_,_,x) },
{ PACK_BITS25(x,_,_,_,x, x,_,x,_,_, x,_,_,_,x, _,_,_,x,_, _,_,x,x,_), PACK_BITS25(x,_,_,_,_, x,_,_,_,_, _,_,_,x,_, x,_,_,_,x, x,_,_,_,x) },
{ PACK_BITS25(x,_,_,_,x, _,_,x,_,_, _,_,_,_,x, _,_,x,_,_, _,x,_,x,_), PACK_BITS25(x,_,x,x,_, x,_,_,_,_, _,_,_,x,_, x,_,_,_,x, x,_,_,_,x) },
{ PACK_BITS25(x,_,_,_,x, _,_,x,_,_, _,_,_,x,_, _,x,x,x,_, _,x,_,x,_), PACK_BITS25(x,x,_,_,x, x,x,x,x,_, _,_,x,_,_, _,x,x,x,_, _,x,x,x,x) },
{ PACK_BITS25(x,_,_,_,x, _,_,x,_,_, _,_,x,_,_, _,_,_,_,x, x,_,_,x,_), PACK_BITS25(_,_,_,_,x, x,_,_,_,x, _,_,x,_,_, x,_,_,_,x, _,_,_,_,x) },
{ PACK_BITS25(x,_,_,_,x, _,_,x,_,_, _,x,_,_,_, _,_,_,_,x, x,x,x,x,x), PACK_BITS25(_,_,_,_,x, x,_,_,_,x, _,x,_,_,_, x,_,_,_,x, _,_,_,_,x) },
{ PACK_BITS25(_,x,_,x,_, _,_,x,_,_, x,_,_,_,_, x,_,_,_,x, _,_,_,x,_), PACK_BITS25(x,_,_,_,x, x,_,_,_,x, _,x,_,_,_, x,_,_,_,x, x,_,_,_,x) },
{ PACK_BITS25(_,_,x,_,_, x,x,x,x,x, x,x,x,x,x, _,x,x,x,_, _,_,_,x,_), PACK_BITS25(_,x,x,x,_, _,x,x,x,_, _,x,_,_,_, _,x,x,x,_, _,x,x,x,_) }
};
#undef _
#undef x
#undef PACK_BITS25
return (fontData[8 - pixCoord.y][digit >= 5] >> ((digit % 5) * 5 + pixCoord.x)) & 1;
}
bool SampleDebugFontNumber(int2 pixCoord, uint number)
{
pixCoord.y -= 4;
if (number <= 9)
{
return SampleDebugFont(pixCoord - int2(6, 0), number);
}
else
{
return (SampleDebugFont(pixCoord, number / 10) | SampleDebugFont(pixCoord - int2(6, 0), number % 10));
}
}
// Draws a heatmap with numbered tiles, with increasingly "hot" background colors depending on n,
// where values at or above maxN receive strong red background color.
float4 OverlayHeatMap(uint2 pixCoord, uint2 tileSize, uint n, uint maxN, float opacity)
{
int colorIndex = 1 + (int)floor(10 * (log2((float)n + 0.1f) / log2(float(maxN))));
colorIndex = clamp(colorIndex, 0, DEBUG_COLORS_COUNT-1);
float4 col = kDebugColorGradient[colorIndex];
int2 coord = (pixCoord & (tileSize - 1)) - int2(tileSize.x/4+1, tileSize.y/3-3);
float4 color = float4(PositivePow(col.rgb, 2.2), opacity * col.a);
if (n >= 0)
{
if (SampleDebugFontNumber(coord, n)) // Shadow
color = float4(0, 0, 0, 1);
if (SampleDebugFontNumber(coord + 1, n)) // Text
color = float4(1, 1, 1, 1);
}
return color;
}
float4 GetStreamingMipColor(uint mipCount, float4 mipInfo)
{
// alpha is amount to blend with source color (0.0 = use original, 1.0 = use new color)
// mipInfo :
// x = quality setings minStreamingMipLevel
// y = original mip count for texture
// z = desired on screen mip level
// w = 0
uint originalTextureMipCount = uint(mipInfo.y);
// If material/shader mip info (original mip level) has not been set its not a streamed texture
if (originalTextureMipCount == 0)
return float4(1.0, 1.0, 1.0, 0.0);
uint desiredMipLevel = uint(mipInfo.z);
uint mipCountDesired = uint(originalTextureMipCount)-uint(desiredMipLevel);
if (mipCount == 0)
{
// Magenta if mip count invalid
return float4(1.0, 0.0, 1.0, 1.0);
}
else if (mipCount < mipCountDesired)
{
// red tones when not at the desired mip level (reduction due to budget). Brighter is further from original, alpha 0 when at desired
float ratioToDesired = float(mipCount) / float(mipCountDesired);
return float4(1.0, 0.0, 0.0, 1.0 - ratioToDesired);
}
else if (mipCount >= originalTextureMipCount)
{
// original color when at (or beyond) original mip count
return float4(1.0, 1.0, 1.0, 0.0);
}
else
{
// green tones when not at the original mip level. Brighter is closer to original, alpha 0 when at original
float ratioToOriginal = float(mipCount) / float(originalTextureMipCount);
return float4(0.0, 1.0, 0.0, 1.0 - ratioToOriginal);
}
}
float4 GetSimpleMipCountColor(uint mipCount)
{
// Grey scale for mip counts where mip count of 14 = white
float mipCountColor = float(mipCount) / 14.0;
float4 color = float4(mipCountColor, mipCountColor, mipCountColor, 1.0f);
// alpha is amount to blend with source color (0.0 = use original, 1.0 = use new color)
// Magenta is no valid mip count
// Red if greater than 14
return mipCount==0 ? float4(1.0, 0.0, 1.0, 1.0) : (mipCount > 14 ? float4(1.0, 0.0, 0.0, 1.0) : color );
}
float4 GetMipLevelColor(float2 uv, float4 texelSize)
{
// Push down into colors list to "optimal level" in following table.
// .zw is texture width,height so *2 is down one mip, *4 is down two mips
texelSize.zw *= 4.0;
float mipLevel = ComputeTextureLOD(uv, texelSize.wz);
mipLevel = clamp(mipLevel, 0.0, 5.0 - 0.0001);
float4 colors[6] = {
float4(0.0, 0.0, 1.0, 0.8), // 0 BLUE = too little texture detail
float4(0.0, 0.5, 1.0, 0.4), // 1
float4(1.0, 1.0, 1.0, 0.0), // 2 = optimal level
float4(1.0, 0.7, 0.0, 0.2), // 3 (YELLOW tint)
float4(1.0, 0.3, 0.0, 0.6), // 4 (clamped mipLevel 4.9999)
float4(1.0, 0.0, 0.0, 0.8) // 5 RED = too much texture detail (max blended value)
};
int mipLevelInt = floor(mipLevel);
float t = frac(mipLevel);
float4 a = colors[mipLevelInt];
float4 b = colors[mipLevelInt + 1];
float4 color = lerp(a, b, t);
return color;
}
float3 GetDebugMipColor(float3 originalColor, float4 texelSize, float2 uv)
{
// https://aras-p.info/blog/2011/05/03/a-way-to-visualize-mip-levels/
float4 mipColor = GetMipLevelColor(uv, texelSize);
return lerp(originalColor, mipColor.rgb, mipColor.a);
}
float3 GetDebugMipCountColor(float3 originalColor, uint mipCount)
{
float4 mipColor = GetSimpleMipCountColor(mipCount);
return lerp(originalColor, mipColor.rgb, mipColor.a);
}
float3 GetDebugStreamingMipColor(uint mipCount, float4 mipInfo)
{
return GetStreamingMipColor(mipCount, mipInfo).xyz;
}
float3 GetDebugStreamingMipColorBlended(float3 originalColor, uint mipCount, float4 mipInfo)
{
float4 mipColor = GetStreamingMipColor(mipCount, mipInfo);
return lerp(originalColor, mipColor.rgb, mipColor.a);
}
float3 GetDebugMipColorIncludingMipReduction(float3 originalColor, uint mipCount, float4 texelSize, float2 uv, float4 mipInfo)
{
uint originalTextureMipCount = uint(mipInfo.y);
if (originalTextureMipCount != 0)
{
// mipInfo :
// x = quality setings minStreamingMipLevel
// y = original mip count for texture
// z = desired on screen mip level
// w = 0
// Mip count has been reduced but the texelSize was not updated to take that into account
uint mipReductionLevel = originalTextureMipCount - mipCount;
uint mipReductionFactor = 1U << mipReductionLevel;
if (mipReductionFactor)
{
float oneOverMipReductionFactor = 1.0 / mipReductionFactor;
// texelSize.xy *= mipReductionRatio; // Unused in GetDebugMipColor so lets not re-calculate it
texelSize.zw *= oneOverMipReductionFactor;
}
}
return GetDebugMipColor(originalColor, texelSize, uv);
}
// mipInfo :
// x = quality setings minStreamingMipLevel
// y = original mip count for texture
// z = desired on screen mip level
// w = 0
float3 GetDebugMipReductionColor(uint mipCount, float4 mipInfo)
{
float3 outColor = float3(1.0, 0.0, 1.0); // Can't calculate without original mip count - return magenta
uint originalTextureMipCount = uint(mipInfo.y);
if (originalTextureMipCount != 0)
{
// Mip count has been reduced but the texelSize was not updated to take that into account
uint mipReductionLevel = originalTextureMipCount - mipCount;
float mipCol = float(mipReductionLevel) / 14.0;
outColor = float3(0, mipCol, 0);
}
return outColor;
}
// Convert an arbitrary range to color base on threshold provide to the function, threshold must be in growing order
real3 GetColorCodeFunction(real value, real4 threshold)
{
const real3 red = { 1.0, 0.0, 0.0 };
const real3 lightGreen = { 0.5, 1.0, 0.5 };
const real3 darkGreen = { 0.1, 1.0, 0.1 };
const real3 yellow = { 1.0, 1.0, 0.0 };
real3 outColor = red;
if (value < threshold[0])
{
outColor = red;
}
else if (value >= threshold[0] && value < threshold[1])
{
real scale = (value - threshold[0]) / (threshold[1] - threshold[0]);
outColor = lerp(red, darkGreen, scale);
}
else if (value >= threshold[1] && value < threshold[2])
{
real scale = (value - threshold[1]) / (threshold[2] - threshold[1]);
outColor = lerp(darkGreen, lightGreen, scale);
}
else if (value >= threshold[2] && value < threshold[3])
{
real scale = (value - threshold[2]) / (threshold[2] - threshold[2]);
outColor = lerp(lightGreen, yellow, scale);
}
else
{
outColor = yellow;
}
return outColor;
}
#endif // UNITY_DEBUG_INCLUDED