Firstborn/Assets/DynamicBone/Scripts/DynamicBone.cs
Schaken-Mods 959e80cf72 assets upload
assets upload description.
2023-03-28 12:16:30 -05:00

1151 lines
32 KiB
C#

#if UNITY_WEBGL
// No multithread
#else
#define ENABLE_MULTITHREAD
#endif
using UnityEngine;
using System.Collections.Generic;
using System.Threading;
[AddComponentMenu("Dynamic Bone/Dynamic Bone")]
public class DynamicBone : MonoBehaviour
{
#if UNITY_5_3_OR_NEWER
[Tooltip("The roots of the transform hierarchy to apply physics.")]
#endif
public Transform m_Root = null;
public List<Transform> m_Roots = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Internal physics simulation rate.")]
#endif
public float m_UpdateRate = 60.0f;
public enum UpdateMode
{
Normal,
AnimatePhysics,
UnscaledTime,
Default
}
public UpdateMode m_UpdateMode = UpdateMode.Default;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the bones slowed down.")]
#endif
[Range(0, 1)]
public float m_Damping = 0.1f;
public AnimationCurve m_DampingDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the force applied to return each bone to original orientation.")]
#endif
[Range(0, 1)]
public float m_Elasticity = 0.1f;
public AnimationCurve m_ElasticityDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much bone's original orientation are preserved.")]
#endif
[Range(0, 1)]
public float m_Stiffness = 0.1f;
public AnimationCurve m_StiffnessDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much character's position change is ignored in physics simulation.")]
#endif
[Range(0, 1)]
public float m_Inert = 0;
public AnimationCurve m_InertDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("How much the bones slowed down when collide.")]
#endif
public float m_Friction = 0;
public AnimationCurve m_FrictionDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Each bone can be a sphere to collide with colliders. Radius describe sphere's size.")]
#endif
public float m_Radius = 0;
public AnimationCurve m_RadiusDistrib = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("If End Length is not zero, an extra bone is generated at the end of transform hierarchy.")]
#endif
public float m_EndLength = 0;
#if UNITY_5_3_OR_NEWER
[Tooltip("If End Offset is not zero, an extra bone is generated at the end of transform hierarchy.")]
#endif
public Vector3 m_EndOffset = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("The force apply to bones. Partial force apply to character's initial pose is cancelled out.")]
#endif
public Vector3 m_Gravity = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("The force apply to bones.")]
#endif
public Vector3 m_Force = Vector3.zero;
#if UNITY_5_3_OR_NEWER
[Tooltip("Control how physics blends with existing animation.")]
#endif
[Range(0, 1)]
public float m_BlendWeight = 1.0f;
#if UNITY_5_3_OR_NEWER
[Tooltip("Collider objects interact with the bones.")]
#endif
public List<DynamicBoneColliderBase> m_Colliders = null;
#if UNITY_5_3_OR_NEWER
[Tooltip("Bones exclude from physics simulation.")]
#endif
public List<Transform> m_Exclusions = null;
public enum FreezeAxis
{
None, X, Y, Z
}
#if UNITY_5_3_OR_NEWER
[Tooltip("Constrain bones to move on specified plane.")]
#endif
public FreezeAxis m_FreezeAxis = FreezeAxis.None;
#if UNITY_5_3_OR_NEWER
[Tooltip("Disable physics simulation automatically if character is far from camera or player.")]
#endif
public bool m_DistantDisable = false;
public Transform m_ReferenceObject = null;
public float m_DistanceToObject = 20;
[HideInInspector]
public bool m_Multithread = true;
Vector3 m_ObjectMove;
Vector3 m_ObjectPrevPosition;
float m_ObjectScale;
float m_Time = 0;
float m_Weight = 1.0f;
bool m_DistantDisabled = false;
int m_PreUpdateCount = 0;
class Particle
{
public Transform m_Transform;
public int m_ParentIndex;
public int m_ChildCount;
public float m_Damping;
public float m_Elasticity;
public float m_Stiffness;
public float m_Inert;
public float m_Friction;
public float m_Radius;
public float m_BoneLength;
public bool m_isCollide;
public bool m_TransformNotNull;
public Vector3 m_Position;
public Vector3 m_PrevPosition;
public Vector3 m_EndOffset;
public Vector3 m_InitLocalPosition;
public Quaternion m_InitLocalRotation;
// prepare data
public Vector3 m_TransformPosition;
public Vector3 m_TransformLocalPosition;
public Matrix4x4 m_TransformLocalToWorldMatrix;
}
class ParticleTree
{
public Transform m_Root;
public Vector3 m_LocalGravity;
public Matrix4x4 m_RootWorldToLocalMatrix;
public float m_BoneTotalLength;
public List<Particle> m_Particles = new List<Particle>();
// prepare data
public Vector3 m_RestGravity;
}
List<ParticleTree> m_ParticleTrees = new List<ParticleTree>();
// prepare data
float m_DeltaTime;
List<DynamicBoneColliderBase> m_EffectiveColliders;
#if ENABLE_MULTITHREAD
// multithread
bool m_WorkAdded = false;
static List<DynamicBone> s_PendingWorks = new List<DynamicBone>();
static List<DynamicBone> s_EffectiveWorks = new List<DynamicBone>();
static AutoResetEvent s_AllWorksDoneEvent;
static int s_RemainWorkCount;
static Semaphore s_WorkQueueSemaphore;
static int s_WorkQueueIndex;
#endif
static int s_UpdateCount;
static int s_PrepareFrame;
void Start()
{
SetupParticles();
}
void FixedUpdate()
{
if (m_UpdateMode == UpdateMode.AnimatePhysics)
{
PreUpdate();
}
}
void Update()
{
if (m_UpdateMode != UpdateMode.AnimatePhysics)
{
PreUpdate();
}
#if ENABLE_MULTITHREAD
if (m_PreUpdateCount > 0 && m_Multithread)
{
AddPendingWork(this);
m_WorkAdded = true;
}
#endif
++s_UpdateCount;
}
void LateUpdate()
{
if (m_PreUpdateCount == 0)
return;
if (s_UpdateCount > 0)
{
s_UpdateCount = 0;
++s_PrepareFrame;
}
SetWeight(m_BlendWeight);
#if ENABLE_MULTITHREAD
if (m_WorkAdded)
{
m_WorkAdded = false;
ExecuteWorks();
}
else
#endif
{
CheckDistance();
if (IsNeedUpdate())
{
Prepare();
UpdateParticles();
ApplyParticlesToTransforms();
}
}
m_PreUpdateCount = 0;
}
void Prepare()
{
m_DeltaTime = Time.deltaTime;
#if UNITY_5_3_OR_NEWER
if (m_UpdateMode == UpdateMode.UnscaledTime)
{
m_DeltaTime = Time.unscaledDeltaTime;
}
else if (m_UpdateMode == UpdateMode.AnimatePhysics)
{
m_DeltaTime = Time.fixedDeltaTime * m_PreUpdateCount;
}
#endif
m_ObjectScale = Mathf.Abs(transform.lossyScale.x);
m_ObjectMove = transform.position - m_ObjectPrevPosition;
m_ObjectPrevPosition = transform.position;
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
ParticleTree pt = m_ParticleTrees[i];
pt.m_RestGravity = pt.m_Root.TransformDirection(pt.m_LocalGravity);
for (int j = 0; j < pt.m_Particles.Count; ++j)
{
Particle p = pt.m_Particles[j];
if (p.m_TransformNotNull)
{
p.m_TransformPosition = p.m_Transform.position;
p.m_TransformLocalPosition = p.m_Transform.localPosition;
p.m_TransformLocalToWorldMatrix = p.m_Transform.localToWorldMatrix;
}
}
}
if (m_EffectiveColliders != null)
{
m_EffectiveColliders.Clear();
}
if (m_Colliders != null)
{
for (int i = 0; i < m_Colliders.Count; ++i)
{
DynamicBoneColliderBase c = m_Colliders[i];
if (c != null && c.enabled)
{
if (m_EffectiveColliders == null)
{
m_EffectiveColliders = new List<DynamicBoneColliderBase>();
}
m_EffectiveColliders.Add(c);
if (c.PrepareFrame != s_PrepareFrame) // colliders used by many dynamic bones only prepares once
{
c.Prepare();
c.PrepareFrame = s_PrepareFrame;
}
}
}
}
}
bool IsNeedUpdate()
{
return m_Weight > 0 && !(m_DistantDisable && m_DistantDisabled);
}
void PreUpdate()
{
if (IsNeedUpdate())
{
InitTransforms();
}
++m_PreUpdateCount;
}
void CheckDistance()
{
if (!m_DistantDisable)
return;
Transform rt = m_ReferenceObject;
if (rt == null && Camera.main != null)
{
rt = Camera.main.transform;
}
if (rt != null)
{
float d2 = (rt.position - transform.position).sqrMagnitude;
bool disable = d2 > m_DistanceToObject * m_DistanceToObject;
if (disable != m_DistantDisabled)
{
if (!disable)
{
ResetParticlesPosition();
}
m_DistantDisabled = disable;
}
}
}
void OnEnable()
{
ResetParticlesPosition();
}
void OnDisable()
{
InitTransforms();
}
void OnValidate()
{
m_UpdateRate = Mathf.Max(m_UpdateRate, 0);
m_Damping = Mathf.Clamp01(m_Damping);
m_Elasticity = Mathf.Clamp01(m_Elasticity);
m_Stiffness = Mathf.Clamp01(m_Stiffness);
m_Inert = Mathf.Clamp01(m_Inert);
m_Friction = Mathf.Clamp01(m_Friction);
m_Radius = Mathf.Max(m_Radius, 0);
if (Application.isEditor && Application.isPlaying)
{
if (IsRootChanged())
{
InitTransforms();
SetupParticles();
}
else
{
UpdateParameters();
}
}
}
bool IsRootChanged()
{
var roots = new List<Transform>();
if (m_Root != null)
{
roots.Add(m_Root);
}
if (m_Roots != null)
{
foreach (var root in m_Roots)
{
if (root != null && !roots.Contains(root))
{
roots.Add(root);
}
}
}
if (roots.Count != m_ParticleTrees.Count)
return true;
for (int i = 0; i < roots.Count; ++i)
{
if (roots[i] != m_ParticleTrees[i].m_Root)
return true;
}
return false;
}
void OnDidApplyAnimationProperties()
{
UpdateParameters();
}
void OnDrawGizmosSelected()
{
if (!enabled)
return;
if (Application.isEditor && !Application.isPlaying && transform.hasChanged)
{
//InitTransforms();
SetupParticles();
}
Gizmos.color = Color.white;
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
DrawGizmos(m_ParticleTrees[i]);
}
}
void DrawGizmos(ParticleTree pt)
{
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
if (p.m_ParentIndex >= 0)
{
Particle p0 = pt.m_Particles[p.m_ParentIndex];
Gizmos.DrawLine(p.m_Position, p0.m_Position);
}
if (p.m_Radius > 0)
{
Gizmos.DrawWireSphere(p.m_Position, p.m_Radius * m_ObjectScale);
}
}
}
public void SetWeight(float w)
{
if (m_Weight != w)
{
if (w == 0)
{
InitTransforms();
}
else if (m_Weight == 0)
{
ResetParticlesPosition();
}
m_Weight = m_BlendWeight = w;
}
}
public float GetWeight()
{
return m_Weight;
}
void UpdateParticles()
{
if (m_ParticleTrees.Count <= 0)
return;
int loop = 1;
float timeVar = 1;
float dt = m_DeltaTime;
if (m_UpdateMode == UpdateMode.Default)
{
if (m_UpdateRate > 0)
{
timeVar = dt * m_UpdateRate;
}
}
else
{
if (m_UpdateRate > 0)
{
float frameTime = 1.0f / m_UpdateRate;
m_Time += dt;
loop = 0;
while (m_Time >= frameTime)
{
m_Time -= frameTime;
if (++loop >= 3)
{
m_Time = 0;
break;
}
}
}
}
if (loop > 0)
{
for (int i = 0; i < loop; ++i)
{
UpdateParticles1(timeVar, i);
UpdateParticles2(timeVar);
}
}
else
{
SkipUpdateParticles();
}
}
public void SetupParticles()
{
m_ParticleTrees.Clear();
if (m_Root != null)
{
AppendParticleTree(m_Root);
}
if (m_Roots != null)
{
for (int i = 0; i < m_Roots.Count; ++i)
{
Transform root = m_Roots[i];
if (root == null)
continue;
if (m_ParticleTrees.Exists(x => x.m_Root == root))
continue;
AppendParticleTree(root);
}
}
m_ObjectScale = Mathf.Abs(transform.lossyScale.x);
m_ObjectPrevPosition = transform.position;
m_ObjectMove = Vector3.zero;
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
ParticleTree pt = m_ParticleTrees[i];
AppendParticles(pt, pt.m_Root, -1, 0);
}
UpdateParameters();
}
void AppendParticleTree(Transform root)
{
if (root == null)
return;
var pt = new ParticleTree();
pt.m_Root = root;
pt.m_RootWorldToLocalMatrix = root.worldToLocalMatrix;
m_ParticleTrees.Add(pt);
}
void AppendParticles(ParticleTree pt, Transform b, int parentIndex, float boneLength)
{
var p = new Particle();
p.m_Transform = b;
p.m_TransformNotNull = b != null;
p.m_ParentIndex = parentIndex;
if (b != null)
{
p.m_Position = p.m_PrevPosition = b.position;
p.m_InitLocalPosition = b.localPosition;
p.m_InitLocalRotation = b.localRotation;
}
else // end bone
{
Transform pb = pt.m_Particles[parentIndex].m_Transform;
if (m_EndLength > 0)
{
Transform ppb = pb.parent;
if (ppb != null)
{
p.m_EndOffset = pb.InverseTransformPoint((pb.position * 2 - ppb.position)) * m_EndLength;
}
else
{
p.m_EndOffset = new Vector3(m_EndLength, 0, 0);
}
}
else
{
p.m_EndOffset = pb.InverseTransformPoint(transform.TransformDirection(m_EndOffset) + pb.position);
}
p.m_Position = p.m_PrevPosition = pb.TransformPoint(p.m_EndOffset);
p.m_InitLocalPosition = Vector3.zero;
p.m_InitLocalRotation = Quaternion.identity;
}
if (parentIndex >= 0)
{
boneLength += (pt.m_Particles[parentIndex].m_Transform.position - p.m_Position).magnitude;
p.m_BoneLength = boneLength;
pt.m_BoneTotalLength = Mathf.Max(pt.m_BoneTotalLength, boneLength);
++pt.m_Particles[parentIndex].m_ChildCount;
}
int index = pt.m_Particles.Count;
pt.m_Particles.Add(p);
if (b != null)
{
for (int i = 0; i < b.childCount; ++i)
{
Transform child = b.GetChild(i);
bool exclude = false;
if (m_Exclusions != null)
{
exclude = m_Exclusions.Contains(child);
}
if (!exclude)
{
AppendParticles(pt, child, index, boneLength);
}
else if (m_EndLength > 0 || m_EndOffset != Vector3.zero)
{
AppendParticles(pt, null, index, boneLength);
}
}
if (b.childCount == 0 && (m_EndLength > 0 || m_EndOffset != Vector3.zero))
{
AppendParticles(pt, null, index, boneLength);
}
}
}
public void UpdateParameters()
{
SetWeight(m_BlendWeight);
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
UpdateParameters(m_ParticleTrees[i]);
}
}
void UpdateParameters(ParticleTree pt)
{
// m_LocalGravity = m_Root.InverseTransformDirection(m_Gravity);
pt.m_LocalGravity = pt.m_RootWorldToLocalMatrix.MultiplyVector(m_Gravity).normalized * m_Gravity.magnitude;
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
p.m_Damping = m_Damping;
p.m_Elasticity = m_Elasticity;
p.m_Stiffness = m_Stiffness;
p.m_Inert = m_Inert;
p.m_Friction = m_Friction;
p.m_Radius = m_Radius;
if (pt.m_BoneTotalLength > 0)
{
float a = p.m_BoneLength / pt.m_BoneTotalLength;
if (m_DampingDistrib != null && m_DampingDistrib.keys.Length > 0)
p.m_Damping *= m_DampingDistrib.Evaluate(a);
if (m_ElasticityDistrib != null && m_ElasticityDistrib.keys.Length > 0)
p.m_Elasticity *= m_ElasticityDistrib.Evaluate(a);
if (m_StiffnessDistrib != null && m_StiffnessDistrib.keys.Length > 0)
p.m_Stiffness *= m_StiffnessDistrib.Evaluate(a);
if (m_InertDistrib != null && m_InertDistrib.keys.Length > 0)
p.m_Inert *= m_InertDistrib.Evaluate(a);
if (m_FrictionDistrib != null && m_FrictionDistrib.keys.Length > 0)
p.m_Friction *= m_FrictionDistrib.Evaluate(a);
if (m_RadiusDistrib != null && m_RadiusDistrib.keys.Length > 0)
p.m_Radius *= m_RadiusDistrib.Evaluate(a);
}
p.m_Damping = Mathf.Clamp01(p.m_Damping);
p.m_Elasticity = Mathf.Clamp01(p.m_Elasticity);
p.m_Stiffness = Mathf.Clamp01(p.m_Stiffness);
p.m_Inert = Mathf.Clamp01(p.m_Inert);
p.m_Friction = Mathf.Clamp01(p.m_Friction);
p.m_Radius = Mathf.Max(p.m_Radius, 0);
}
}
void InitTransforms()
{
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
InitTransforms(m_ParticleTrees[i]);
}
}
void InitTransforms(ParticleTree pt)
{
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
if (p.m_TransformNotNull)
{
p.m_Transform.localPosition = p.m_InitLocalPosition;
p.m_Transform.localRotation = p.m_InitLocalRotation;
}
}
}
void ResetParticlesPosition()
{
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
ResetParticlesPosition(m_ParticleTrees[i]);
}
m_ObjectPrevPosition = transform.position;
}
void ResetParticlesPosition(ParticleTree pt)
{
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
if (p.m_TransformNotNull)
{
p.m_Position = p.m_PrevPosition = p.m_Transform.position;
}
else // end bone
{
Transform pb = pt.m_Particles[p.m_ParentIndex].m_Transform;
p.m_Position = p.m_PrevPosition = pb.TransformPoint(p.m_EndOffset);
}
p.m_isCollide = false;
}
}
void UpdateParticles1(float timeVar, int loopIndex)
{
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
UpdateParticles1(m_ParticleTrees[i], timeVar, loopIndex);
}
}
void UpdateParticles1(ParticleTree pt, float timeVar, int loopIndex)
{
Vector3 force = m_Gravity;
Vector3 fdir = m_Gravity.normalized;
Vector3 pf = fdir * Mathf.Max(Vector3.Dot(pt.m_RestGravity, fdir), 0); // project current gravity to rest gravity
force -= pf; // remove projected gravity
force = (force + m_Force) * (m_ObjectScale * timeVar);
Vector3 objectMove = loopIndex == 0 ? m_ObjectMove : Vector3.zero; // only first loop consider object move
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
if (p.m_ParentIndex >= 0)
{
// verlet integration
Vector3 v = p.m_Position - p.m_PrevPosition;
Vector3 rmove = objectMove * p.m_Inert;
p.m_PrevPosition = p.m_Position + rmove;
float damping = p.m_Damping;
if (p.m_isCollide)
{
damping += p.m_Friction;
if (damping > 1)
{
damping = 1;
}
p.m_isCollide = false;
}
p.m_Position += v * (1 - damping) + force + rmove;
}
else
{
p.m_PrevPosition = p.m_Position;
p.m_Position = p.m_TransformPosition;
}
}
}
void UpdateParticles2(float timeVar)
{
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
UpdateParticles2(m_ParticleTrees[i], timeVar);
}
}
void UpdateParticles2(ParticleTree pt, float timeVar)
{
var movePlane = new Plane();
for (int i = 1; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
Particle p0 = pt.m_Particles[p.m_ParentIndex];
float restLen;
if (p.m_TransformNotNull)
{
restLen = (p0.m_TransformPosition - p.m_TransformPosition).magnitude;
}
else
{
restLen = p0.m_TransformLocalToWorldMatrix.MultiplyVector(p.m_EndOffset).magnitude;
}
// keep shape
float stiffness = Mathf.Lerp(1.0f, p.m_Stiffness, m_Weight);
if (stiffness > 0 || p.m_Elasticity > 0)
{
Matrix4x4 m0 = p0.m_TransformLocalToWorldMatrix;
m0.SetColumn(3, p0.m_Position);
Vector3 restPos;
if (p.m_TransformNotNull)
{
restPos = m0.MultiplyPoint3x4(p.m_TransformLocalPosition);
}
else
{
restPos = m0.MultiplyPoint3x4(p.m_EndOffset);
}
Vector3 d = restPos - p.m_Position;
p.m_Position += d * (p.m_Elasticity * timeVar);
if (stiffness > 0)
{
d = restPos - p.m_Position;
float len = d.magnitude;
float maxlen = restLen * (1 - stiffness) * 2;
if (len > maxlen)
{
p.m_Position += d * ((len - maxlen) / len);
}
}
}
// collide
if (m_EffectiveColliders != null)
{
float particleRadius = p.m_Radius * m_ObjectScale;
for (int j = 0; j < m_EffectiveColliders.Count; ++j)
{
DynamicBoneColliderBase c = m_EffectiveColliders[j];
p.m_isCollide |= c.Collide(ref p.m_Position, particleRadius);
}
}
// freeze axis, project to plane
if (m_FreezeAxis != FreezeAxis.None)
{
Vector3 planeNormal = p0.m_TransformLocalToWorldMatrix.GetColumn((int)m_FreezeAxis - 1).normalized;
movePlane.SetNormalAndPosition(planeNormal, p0.m_Position);
p.m_Position -= movePlane.normal * movePlane.GetDistanceToPoint(p.m_Position);
}
// keep length
Vector3 dd = p0.m_Position - p.m_Position;
float leng = dd.magnitude;
if (leng > 0)
{
p.m_Position += dd * ((leng - restLen) / leng);
}
}
}
void SkipUpdateParticles()
{
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
SkipUpdateParticles(m_ParticleTrees[i]);
}
}
// only update stiffness and keep bone length
void SkipUpdateParticles(ParticleTree pt)
{
for (int i = 0; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
if (p.m_ParentIndex >= 0)
{
p.m_PrevPosition += m_ObjectMove;
p.m_Position += m_ObjectMove;
Particle p0 = pt.m_Particles[p.m_ParentIndex];
float restLen;
if (p.m_TransformNotNull)
{
restLen = (p0.m_TransformPosition - p.m_TransformPosition).magnitude;
}
else
{
restLen = p0.m_TransformLocalToWorldMatrix.MultiplyVector(p.m_EndOffset).magnitude;
}
// keep shape
float stiffness = Mathf.Lerp(1.0f, p.m_Stiffness, m_Weight);
if (stiffness > 0)
{
Matrix4x4 m0 = p0.m_TransformLocalToWorldMatrix;
m0.SetColumn(3, p0.m_Position);
Vector3 restPos;
if (p.m_TransformNotNull)
{
restPos = m0.MultiplyPoint3x4(p.m_TransformLocalPosition);
}
else
{
restPos = m0.MultiplyPoint3x4(p.m_EndOffset);
}
Vector3 d = restPos - p.m_Position;
float len = d.magnitude;
float maxlen = restLen * (1 - stiffness) * 2;
if (len > maxlen)
{
p.m_Position += d * ((len - maxlen) / len);
}
}
// keep length
Vector3 dd = p0.m_Position - p.m_Position;
float leng = dd.magnitude;
if (leng > 0)
{
p.m_Position += dd * ((leng - restLen) / leng);
}
}
else
{
p.m_PrevPosition = p.m_Position;
p.m_Position = p.m_TransformPosition;
}
}
}
static Vector3 MirrorVector(Vector3 v, Vector3 axis)
{
return v - axis * (Vector3.Dot(v, axis) * 2);
}
void ApplyParticlesToTransforms()
{
Vector3 ax = Vector3.right;
Vector3 ay = Vector3.up;
Vector3 az = Vector3.forward;
bool nx = false, ny = false, nz = false;
#if !UNITY_5_4_OR_NEWER
// detect negative scale
Vector3 lossyScale = transform.lossyScale;
if (lossyScale.x < 0 || lossyScale.y < 0 || lossyScale.z < 0)
{
Transform mirrorObject = transform;
do
{
Vector3 ls = mirrorObject.localScale;
nx = ls.x < 0;
if (nx)
ax = mirrorObject.right;
ny = ls.y < 0;
if (ny)
ay = mirrorObject.up;
nz = ls.z < 0;
if (nz)
az = mirrorObject.forward;
if (nx || ny || nz)
break;
mirrorObject = mirrorObject.parent;
}
while (mirrorObject != null);
}
#endif
for (int i = 0; i < m_ParticleTrees.Count; ++i)
{
ApplyParticlesToTransforms(m_ParticleTrees[i], ax, ay, az, nx, ny, nz);
}
}
void ApplyParticlesToTransforms(ParticleTree pt, Vector3 ax, Vector3 ay, Vector3 az, bool nx, bool ny, bool nz)
{
for (int i = 1; i < pt.m_Particles.Count; ++i)
{
Particle p = pt.m_Particles[i];
Particle p0 = pt.m_Particles[p.m_ParentIndex];
if (p0.m_ChildCount <= 1) // do not modify bone orientation if has more then one child
{
Vector3 localPos;
if (p.m_TransformNotNull)
{
localPos = p.m_Transform.localPosition;
}
else
{
localPos = p.m_EndOffset;
}
Vector3 v0 = p0.m_Transform.TransformDirection(localPos);
Vector3 v1 = p.m_Position - p0.m_Position;
#if !UNITY_5_4_OR_NEWER
if (nx)
v1 = MirrorVector(v1, ax);
if (ny)
v1 = MirrorVector(v1, ay);
if (nz)
v1 = MirrorVector(v1, az);
#endif
Quaternion rot = Quaternion.FromToRotation(v0, v1);
p0.m_Transform.rotation = rot * p0.m_Transform.rotation;
}
if (p.m_TransformNotNull)
{
p.m_Transform.position = p.m_Position;
}
}
}
#if ENABLE_MULTITHREAD
static void AddPendingWork(DynamicBone db)
{
s_PendingWorks.Add(db);
}
static void AddWorkToQueue(DynamicBone db)
{
s_WorkQueueSemaphore.Release();
}
static DynamicBone GetWorkFromQueue()
{
int idx = Interlocked.Increment(ref s_WorkQueueIndex);
return s_EffectiveWorks[idx];
}
static void ThreadProc()
{
while (true)
{
s_WorkQueueSemaphore.WaitOne();
DynamicBone db = GetWorkFromQueue();
db.UpdateParticles();
if (Interlocked.Decrement(ref s_RemainWorkCount) <= 0)
{
s_AllWorksDoneEvent.Set();
}
}
}
static void InitThreadPool()
{
s_AllWorksDoneEvent = new AutoResetEvent(false);
s_WorkQueueSemaphore = new Semaphore(0, int.MaxValue);
int threadCount = System.Environment.ProcessorCount;
for (int i = 0; i < threadCount; ++i)
{
var t = new Thread(ThreadProc);
t.IsBackground = true;
t.Start();
}
}
static void ExecuteWorks()
{
if (s_PendingWorks.Count <= 0)
return;
s_EffectiveWorks.Clear();
for (int i = 0; i < s_PendingWorks.Count; ++i)
{
DynamicBone db = s_PendingWorks[i];
if (db != null && db.enabled)
{
db.CheckDistance();
if (db.IsNeedUpdate())
{
s_EffectiveWorks.Add(db);
}
}
}
s_PendingWorks.Clear();
if (s_EffectiveWorks.Count <= 0)
return;
if (s_AllWorksDoneEvent == null)
{
InitThreadPool();
}
int workCount = s_RemainWorkCount = s_EffectiveWorks.Count;
s_WorkQueueIndex = -1;
for (int i = 0; i < workCount; ++i)
{
DynamicBone db = s_EffectiveWorks[i];
db.Prepare();
AddWorkToQueue(db);
}
s_AllWorksDoneEvent.WaitOne();
for (int i = 0; i < workCount; ++i)
{
DynamicBone db = s_EffectiveWorks[i];
db.ApplyParticlesToTransforms();
}
}
#endif
}