Firstborn/Library/PackageCache/com.unity.collections@1.4.0/Unity.Collections.BurstComp.../BurstCompatibilityTests.cs

1012 lines
44 KiB
C#
Raw Normal View History

2023-03-28 13:24:16 -04:00
#if UNITY_EDITOR
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Reflection;
using System.Runtime.InteropServices;
using System.Text;
using System.Text.RegularExpressions;
using UnityEditor;
using UnityEditor.Build.Reporting;
using UnityEngine;
using UnityEngine.TestTools;
using Assembly = System.Reflection.Assembly;
using Debug = UnityEngine.Debug;
namespace Unity.Collections.Tests
{
/// <summary>
/// Base class for semi-automated burst compatibility testing.
/// </summary>
/// <remarks>
/// To create Burst compatibility tests for your assembly, you must do the following:<para/> <para/>
///
/// 1. Set up a directory to contain the generated Burst compatibility code.<para/> <para/>
///
/// 2. Create a new asmdef in that directory. You should set up the references so you can access Burst and
/// your assembly. This new asmdef *must* support all platforms because the Burst compatibility tests use player
/// builds to compile the code in parallel.<para/> <para/>
///
/// 3. If you wish to test internal methods, you should make internals visible to the new asmdef you created in
/// step 2.<para/> <para/>
///
/// 4. Create a new class and inherit BurstCompatibilityTests. Call the base constructor with the appropriate
/// arguments so BurstCompatibilityTests knows which assemblies to scan for the [BurstCompatible] attribute and
/// where to put the generated Burst compatibility code. This new class should live in an editor only assembly and
/// the generated Burst compatibility code should be a part of the multiplatform asmdef you created in step 2.
/// <para/> <para/>
///
/// 5. If your generated code will live in your package directory, you may need to add the [EmbeddedPackageOnlyTest]
/// attribute to your new class.<para/> <para/>
///
/// 6. Start adding [BurstCompatible] or [NotBurstCompatible] attributes to your types or methods.<para/> <para/>
///
/// 7. In the test runner, run the test called CompatibilityTests that can be found nested under the name of your
/// new test class you implemented in step 4.<para/> <para/>
/// </remarks>
public abstract class BurstCompatibilityTests
{
private string m_GeneratedCodePath;
private HashSet<string> m_AssembliesToVerify = new HashSet<string>();
private string m_GeneratedCodeAssemblyName;
private readonly string m_TempBurstCompatibilityPath;
private static readonly string s_GeneratedClassName = "_generated_burst_compat_tests";
/// <summary>
/// Sets up the code generator for Burst compatibility tests.
/// </summary>
/// <param name="assemblyNameToVerifyBurstCompatibility">Name of the assembly to verify Burst compatibility.</param>
/// <param name="generatedCodePath">Destination path for the generated Burst compatibility code.</param>
/// <param name="generatedCodeAssemblyName">Name of the assembly that will contain the generated Burst compatibility code.</param>
protected BurstCompatibilityTests(string assemblyNameToVerifyBurstCompatibility, string generatedCodePath, string generatedCodeAssemblyName)
: this(new[] {assemblyNameToVerifyBurstCompatibility}, generatedCodePath, generatedCodeAssemblyName)
{
}
/// <summary>
/// Sets up the code generator for Burst compatibility tests.
/// </summary>
/// <remarks>
/// This constructor takes multiple assembly names to verify, which allows you to check multiple assemblies with
/// one test. Prefer to use this instead of separate tests that verify a single assembly if you need to minimize
/// CI time.
/// </remarks>
/// <param name="assemblyNamesToVerifyBurstCompatibility">Names of the assemblies to verify Burst compatibility.</param>
/// <param name="generatedCodePath">Destination path for the generated Burst compatibility code.</param>
/// <param name="generatedCodeAssemblyName">Name of the assembly that will contain the generated Burst compatibility code.</param>
protected BurstCompatibilityTests(string[] assemblyNamesToVerifyBurstCompatibility, string generatedCodePath, string generatedCodeAssemblyName)
{
m_GeneratedCodePath = generatedCodePath;
foreach (var assemblyName in assemblyNamesToVerifyBurstCompatibility)
{
m_AssembliesToVerify.Add(assemblyName);
}
m_GeneratedCodeAssemblyName = generatedCodeAssemblyName;
m_TempBurstCompatibilityPath = Path.Combine("Temp", "BurstCompatibility", GetType().Name);
}
struct MethodData : IComparable<MethodData>
{
public MethodBase methodBase;
public Type InstanceType;
public Type[] MethodGenericTypeArguments;
public Type[] InstanceTypeGenericTypeArguments;
public Dictionary<string, Type> MethodGenericArgumentLookup;
public Dictionary<string, Type> InstanceTypeGenericArgumentLookup;
public string RequiredDefine;
public BurstCompatibleAttribute.BurstCompatibleCompileTarget CompileTarget;
public int CompareTo(MethodData other)
{
var lhs = methodBase;
var rhs = other.methodBase;
var ltn = methodBase.DeclaringType.FullName;
var rtn = other.methodBase.DeclaringType.FullName;
int tc = ltn.CompareTo(rtn);
if (tc != 0) return tc;
tc = lhs.Name.CompareTo(rhs.Name);
if (tc != 0) return tc;
var lp = lhs.GetParameters();
var rp = rhs.GetParameters();
if (lp.Length < rp.Length)
return -1;
if (lp.Length > rp.Length)
return 1;
var lb = new StringBuilder();
var rb = new StringBuilder();
for (int i = 0; i < lp.Length; ++i)
{
GetFullTypeName(lp[i].ParameterType, lb, this);
GetFullTypeName(rp[i].ParameterType, rb, other);
tc = lb.ToString().CompareTo(rb.ToString());
if (tc != 0)
return tc;
lb.Clear();
rb.Clear();
}
return 0;
}
public Type ReplaceGeneric(Type genericType)
{
if (genericType.IsByRef)
{
genericType = genericType.GetElementType();
}
if (MethodGenericArgumentLookup == null & InstanceTypeGenericArgumentLookup == null)
{
throw new InvalidOperationException("For '{InstanceType.Name}.{Info.Name}', generic argument lookups are null! Did you forget to specify GenericTypeArguments in the [BurstCompatible] attribute?");
}
bool hasMethodReplacement = MethodGenericArgumentLookup.ContainsKey(genericType.Name);
bool hasInstanceTypeReplacement = InstanceTypeGenericArgumentLookup.ContainsKey(genericType.Name);
if (hasMethodReplacement)
{
return MethodGenericArgumentLookup[genericType.Name];
}
else if (hasInstanceTypeReplacement)
{
return InstanceTypeGenericArgumentLookup[genericType.Name];
}
else
{
throw new ArgumentException($"'{genericType.Name}' in '{InstanceType.Name}.{methodBase.Name}' has no generic type replacement in the generic argument lookups! Did you forget to specify GenericTypeArguments in the [BurstCompatible] attribute?");
}
}
}
/// <summary>
/// Generates the code for the Burst compatibility tests.
/// </summary>
/// <param name="path">Path of the generated file.</param>
/// <param name="methodsTestedCount">Number of methods being tested.</param>
/// <returns>True if the file was generated successfully; false otherwise.</returns>
private bool UpdateGeneratedFile(string path, out int methodsTestedCount)
{
var buf = new StringBuilder();
var success = GetTestMethods(out MethodData[] methods);
if (!success)
{
methodsTestedCount = 0;
return false;
}
buf.AppendLine(
@"// auto-generated
#if !NET_DOTS
using System;
using System.Collections.Generic;
using NUnit.Framework;
using Unity.Burst;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;");
// This serves to force the player build to skip all the shader variants which dramatically
// reduces the player build time. Since we only care about burst compilation, this is fine
// and desirable. The reason why this code is generated is that as soon as this definition
// exists, the player build pipeline will start using it. Since we don't want to bloat user
// build pipelines with extra callbacks or modify their behavior, we generate the code here
// for test use only.
buf.AppendLine(@"
#if UNITY_EDITOR
using UnityEngine;
using UnityEditor.Build;
using UnityEditor.Rendering;
class BurstCompatibleSkipShaderVariants : IPreprocessShaders
{
public int callbackOrder => 0;
public void OnProcessShader(Shader shader, ShaderSnippetData snippet, IList<ShaderCompilerData> data)
{
data.Clear();
}
}
#endif
");
buf.AppendLine("[BurstCompile]");
buf.AppendLine($"public unsafe class {s_GeneratedClassName}");
buf.AppendLine("{");
buf.AppendLine(" private delegate void TestFunc(IntPtr p);");
var overloadHandling = new Dictionary<string, int>();
foreach (var methodData in methods)
{
var method = methodData.methodBase;
var isGetter = method.Name.StartsWith("get_");
var isSetter = method.Name.StartsWith("set_");
var isProperty = isGetter | isSetter;
var isIndexer = method.Name.Equals("get_Item") || method.Name.Equals("set_Item");
var sourceName = isProperty ? method.Name.Substring(4) : method.Name;
var safeName = GetSafeName(methodData);
if (overloadHandling.ContainsKey(safeName))
{
int num = overloadHandling[safeName]++;
safeName += $"_overload{num}";
}
else
{
overloadHandling.Add(safeName, 0);
}
if (methodData.RequiredDefine != null)
{
buf.AppendLine($"#if {methodData.RequiredDefine}");
}
if (methodData.CompileTarget == BurstCompatibleAttribute.BurstCompatibleCompileTarget.Editor)
{
// Emit #if UNITY_EDITOR in case BurstCompatible attribute doesn't have any required
// unity defines. We want to be sure that we actually test the editor only code when
// we are actually in the editor.
buf.AppendLine("#if UNITY_EDITOR");
}
buf.AppendLine(" [BurstCompile(CompileSynchronously = true)]");
buf.AppendLine($" public static void Burst_{safeName}(IntPtr p)");
buf.AppendLine(" {");
// Generate targets for out/ref parameters
var parameters = method.GetParameters();
for (int i = 0; i < parameters.Length; ++i)
{
var param = parameters[i];
var pt = param.ParameterType;
if (pt.IsGenericParameter ||
(pt.IsByRef && pt.GetElementType().IsGenericParameter))
{
pt = methodData.ReplaceGeneric(pt);
}
if (pt.IsGenericTypeDefinition)
{
pt = pt.MakeGenericType(methodData.InstanceTypeGenericTypeArguments);
}
if (pt.IsPointer)
{
TypeToString(pt, buf, methodData);
buf.Append($" v{i} = (");
TypeToString(pt, buf, methodData);
buf.AppendLine($") ((byte*)p + {i * 1024});");
}
else
{
buf.Append($" var v{i} = default(");
TypeToString(pt, buf, methodData);
buf.AppendLine(");");
}
}
var info = method as MethodInfo;
var refStr = "";
var readonlyStr = "";
// [MayOnlyLiveInBlobStorage] forces types to be referred to by reference only, so we
// must be sure to make any local vars use ref whenever something is a ref return.
//
// Furthermore, we also care about readonly since some returns are ref readonly returns.
// Detecting readonly is done by checking the required custom modifiers for the InAttribute.
if (info != null && info.ReturnType.IsByRef)
{
refStr = "ref ";
if (info.ReturnParameter.GetRequiredCustomModifiers().Contains(typeof(InAttribute)))
{
readonlyStr = "readonly ";
}
}
if (method.IsStatic)
{
if (isGetter)
buf.Append($" {refStr}{readonlyStr}var __result = {refStr}");
TypeToString(methodData.InstanceType, buf, methodData);
buf.Append($".{sourceName}");
}
else
{
StringBuilder typeStringBuilder = new StringBuilder();
TypeToString(methodData.InstanceType, typeStringBuilder, methodData);
if (typeStringBuilder.ToString() == "Unity.Entities.SystemState")
{
buf.Append($" ref var instance = ref *(");
buf.Append(typeStringBuilder);
buf.AppendLine("*)((void*)p);");
}
else
{
buf.Append($" ref var instance = ref UnsafeUtility.AsRef<");
buf.Append(typeStringBuilder);
buf.AppendLine(">((void*)p);");
}
if (isIndexer)
{
if (isGetter)
buf.Append($" {refStr}{readonlyStr}var __result = {refStr}instance");
else if (isSetter)
buf.Append(" instance");
}
else if (method.IsConstructor)
{
// Begin the setup for the constructor call. Arguments will be handled later.
buf.Append(" instance = new ");
TypeToString(methodData.InstanceType, buf, methodData);
}
else
{
if (isGetter)
buf.Append($" {refStr}{readonlyStr}var __result = {refStr}");
buf.Append($" instance.{sourceName}");
}
}
if (method.IsGenericMethod)
{
buf.Append("<");
var args = method.GetGenericArguments();
for (int i = 0; i < args.Length; ++i)
{
if (i > 0)
buf.Append(", ");
TypeToString(args[i], buf, methodData);
}
buf.Append(">");
}
// Make dummy arguments.
if (isIndexer)
{
buf.Append("[");
}
else
{
if (isGetter)
{
}
else if (isSetter)
buf.Append("=");
else
buf.Append("(");
}
for (int i = 0; i < parameters.Length; ++i)
{
// Close the indexer brace and assign the value if we're handling an indexer and setter.
if (isIndexer && isSetter && i + 1 == parameters.Length)
{
buf.Append($"] = v{i}");
break;
}
if (i > 0)
buf.Append(" ,");
// Close the indexer brace. This is separate from the setter logic above because the
// comma separating arguments is required for the getter case but not for the setter.
if (isIndexer && isGetter && i + 1 == parameters.Length)
{
buf.Append($"v{i}]");
break;
}
var param = parameters[i];
if (param.IsOut)
{
buf.Append("out ");
}
else if (param.IsIn)
{
buf.Append("in ");
}
else if (param.ParameterType.IsByRef)
{
buf.Append("ref ");
}
buf.Append($"v{i}");
}
if (!isProperty)
buf.Append(")");
buf.AppendLine(";");
buf.AppendLine(" }");
if (methodData.CompileTarget == BurstCompatibleAttribute.BurstCompatibleCompileTarget.Editor)
{
// Closes #if UNITY_EDITOR that surrounds the actual method/property being tested.
buf.AppendLine("#endif");
}
// Set up the call to BurstCompiler.CompileFunctionPointer only in the cases where it is necessary.
switch (methodData.CompileTarget)
{
case BurstCompatibleAttribute.BurstCompatibleCompileTarget.PlayerAndEditor:
case BurstCompatibleAttribute.BurstCompatibleCompileTarget.Editor:
{
buf.AppendLine("#if UNITY_EDITOR");
buf.AppendLine($" public static void BurstCompile_{safeName}()");
buf.AppendLine(" {");
buf.AppendLine($" BurstCompiler.CompileFunctionPointer<TestFunc>(Burst_{safeName});");
buf.AppendLine(" }");
buf.AppendLine("#endif");
break;
}
}
if (methodData.RequiredDefine != null)
{
buf.AppendLine($"#endif");
}
}
buf.AppendLine("}");
buf.AppendLine("#endif");
File.WriteAllText(path, buf.ToString());
methodsTestedCount = methods.Length;
return true;
}
private static void TypeToString(Type t, StringBuilder buf, in MethodData methodData)
{
if (t.IsPrimitive || t == typeof(void))
{
buf.Append(PrimitiveTypeToString(t));
return;
}
if (t.IsByRef)
{
TypeToString(t.GetElementType(), buf, methodData);
return;
}
// This should come after the IsByRef check above to avoid adding an extra asterisk.
// You could have a T*& (ref to a pointer) which causes t.IsByRef and t.IsPointer to both be true and if
// you check t.IsPointer first then descend down the types with t.GetElementType() you end up with
// T* which causes you to descend a second time then print an asterisk twice as you come back up the
// recursion.
if (t.IsPointer)
{
TypeToString(t.GetElementType(), buf, methodData);
buf.Append("*");
return;
}
GetFullTypeName(t, buf, methodData);
}
private static string PrimitiveTypeToString(Type type)
{
if (type == typeof(void))
return "void";
if (type == typeof(bool))
return "bool";
if (type == typeof(byte))
return "byte";
if (type == typeof(sbyte))
return "sbyte";
if (type == typeof(short))
return "short";
if (type == typeof(ushort))
return "ushort";
if (type == typeof(int))
return "int";
if (type == typeof(uint))
return "uint";
if (type == typeof(long))
return "long";
if (type == typeof(ulong))
return "ulong";
if (type == typeof(char))
return "char";
if (type == typeof(double))
return "double";
if (type == typeof(float))
return "float";
if (type == typeof(IntPtr))
return "IntPtr";
if (type == typeof(UIntPtr))
return "UIntPtr";
throw new InvalidOperationException($"{type} is not a primitive type");
}
private static void GetFullTypeName(Type type, StringBuilder buf, in MethodData methodData)
{
// If we encounter a generic parameter (typically T) then we should replace it with a real one
// specified by [BurstCompatible(GenericTypeArguments = new [] { typeof(...) })].
if (type.IsGenericParameter)
{
GetFullTypeName(methodData.ReplaceGeneric(type), buf, methodData);
return;
}
if (type.DeclaringType != null)
{
GetFullTypeName(type.DeclaringType, buf, methodData);
buf.Append(".");
}
else
{
// These appends for the namespace used to be protected by an if check for Unity.Collections or
// Unity.Collections.LowLevel.Unsafe, but HashSetExtensions lives in both so just fully disambiguate
// by always appending the namespace.
buf.Append(type.Namespace);
buf.Append(".");
}
var name = type.Name;
var idx = name.IndexOf('`');
if (-1 != idx)
{
name = name.Remove(idx);
}
buf.Append(name);
if (type.IsConstructedGenericType || type.IsGenericTypeDefinition)
{
var gt = type.GetGenericArguments();
// Avoid printing out the generic arguments for cases like UnsafeHashMap<TKey, TValue>.ParallelWriter.
// ParallelWriter is considered to be a generic type and will have two generic parameters inherited
// from UnsafeHashMap. Because of this, if we don't do this check, we could code gen this:
//
// UnsafeHashMap<int, int>.ParallelWriter<int, int>
//
// But we want:
//
// UnsafeHashMap<int, int>.ParallelWriter
//
// ParallelWriter doesn't actually have generic arguments you can give it directly so it's not correct
// to give it generic arguments. If the nested type has the same number of generic arguments as its
// declaring type, then there should be no new generic arguments and therefore nothing to print.
if (type.IsNested && gt.Length == type.DeclaringType.GetGenericArguments().Length)
{
return;
}
buf.Append("<");
for (int i = 0; i < gt.Length; ++i)
{
if (i > 0)
{
buf.Append(", ");
}
TypeToString(gt[i], buf, methodData);
}
buf.Append(">");
}
}
private static readonly Type[] EmptyGenericTypeArguments = { };
private bool GetTestMethods(out MethodData[] methods)
{
var seenMethods = new HashSet<MethodBase>();
var result = new List<MethodData>();
int errorCount = 0;
void LogError(string message)
{
++errorCount;
Debug.LogError(message);
}
void MaybeAddMethod(MethodBase m, Type[] methodGenericTypeArguments, Type[] declaredTypeGenericTypeArguments, string requiredDefine, MemberInfo attributeHolder, BurstCompatibleAttribute.BurstCompatibleCompileTarget compileTarget)
{
if (m.IsPrivate)
{
// Private methods that were explicitly tagged as [BurstCompatible] should generate an error to
// avoid users thinking the method is being tested when it actually isn't.
if (m.GetCustomAttribute<BurstCompatibleAttribute>() != null)
{
// Just return and avoiding printing duplicate errors if we've already seen this method.
if (seenMethods.Contains(m))
return;
seenMethods.Add(m);
LogError($"BurstCompatibleAttribute cannot be used with private methods, but found on private method `{m.DeclaringType}.{m}`. Make method public, internal, or ensure that this method is called by another public/internal method that is tested.");
}
return;
}
// Burst IL post processing might create a new method that contains $ to ensure it doesn't
// conflict with any real names (as an example, it can append $BurstManaged to the original method name).
// However, trying to call that method directly in C# isn't possible because the $ is invalid for
// identifiers.
if (m.Name.Contains('$'))
{
return;
}
if (attributeHolder.GetCustomAttribute<ObsoleteAttribute>() != null)
return;
if (attributeHolder.GetCustomAttribute<NotBurstCompatibleAttribute>() != null)
return;
// If this is not a property but still has a special name, ignore it.
if (attributeHolder is MethodInfo && m.IsSpecialName)
return;
var methodGenericArgumentLookup = new Dictionary<string, Type>();
if (m.IsGenericMethodDefinition)
{
if (methodGenericTypeArguments == null)
{
LogError($"Method `{m.DeclaringType}.{m}` is generic but doesn't have a type array in its BurstCompatible attribute");
return;
}
var genericArguments = m.GetGenericArguments();
if (genericArguments.Length != methodGenericTypeArguments.Length)
{
LogError($"Method `{m.DeclaringType}.{m}` is generic with {genericArguments.Length} generic parameters but BurstCompatible attribute has {methodGenericTypeArguments.Length} types, they must be the same length!");
return;
}
try
{
m = (m as MethodInfo).MakeGenericMethod(methodGenericTypeArguments);
}
catch (Exception e)
{
LogError($"Could not instantiate method `{m.DeclaringType}.{m}` with type arguments `{methodGenericTypeArguments}`.");
Debug.LogException(e);
return;
}
// Build up the generic name to type lookup for this method.
for (int i = 0; i < genericArguments.Length; ++i)
{
var name = genericArguments[i].Name;
var type = methodGenericTypeArguments[i];
try
{
methodGenericArgumentLookup.Add(name, type);
}
catch (Exception e)
{
LogError($"For method `{m.DeclaringType}.{m}`, could not add ({name}, {type}).");
Debug.LogException(e);
return;
}
}
}
var instanceType = m.DeclaringType;
var instanceTypeGenericLookup = new Dictionary<string, Type>();
if (instanceType.IsGenericTypeDefinition)
{
var instanceGenericArguments = instanceType.GetGenericArguments();
if (declaredTypeGenericTypeArguments == null)
{
LogError($"Type `{m.DeclaringType}` is generic but doesn't have a type array in its BurstCompatible attribute");
return;
}
if (instanceGenericArguments.Length != declaredTypeGenericTypeArguments.Length)
{
LogError($"Type `{instanceType}` is generic with {instanceGenericArguments.Length} generic parameters but BurstCompatible attribute has {declaredTypeGenericTypeArguments.Length} types, they must be the same length!");
return;
}
try
{
instanceType = instanceType.MakeGenericType(declaredTypeGenericTypeArguments);
}
catch (Exception e)
{
LogError($"Could not instantiate type `{instanceType}` with type arguments `{declaredTypeGenericTypeArguments}`.");
Debug.LogException(e);
return;
}
// Build up the generic name to type lookup for this method.
for (int i = 0; i < instanceGenericArguments.Length; ++i)
{
var name = instanceGenericArguments[i].Name;
var type = declaredTypeGenericTypeArguments[i];
try
{
instanceTypeGenericLookup.Add(name, type);
}
catch (Exception e)
{
LogError($"For type `{instanceType}`, could not add ({name}, {type}).");
Debug.LogException(e);
return;
}
}
}
//if (m.GetParameters().Any((p) => !p.ParameterType.IsValueType && !p.ParameterType.IsPointer))
// return;
// These are crazy nested function names. They'll be covered anyway as the parent function is burst compatible.
if (m.Name.Contains('<'))
return;
if (seenMethods.Contains(m))
return;
seenMethods.Add(m);
result.Add(new MethodData
{
methodBase = m, InstanceType = instanceType, MethodGenericTypeArguments = methodGenericTypeArguments,
InstanceTypeGenericTypeArguments = declaredTypeGenericTypeArguments, RequiredDefine = requiredDefine,
MethodGenericArgumentLookup = methodGenericArgumentLookup, InstanceTypeGenericArgumentLookup = instanceTypeGenericLookup,
CompileTarget = compileTarget
});
}
var declaredTypeGenericArguments = new Dictionary<Type, Type[]>();
// Go through types tagged with [BurstCompatible] and their methods before performing the direct method
// search (below this loop) to ensure that we get the declared type generic arguments.
//
// If we were to run the direct method search first, it's possible we would add the method to the seen list
// and then by the time we execute this loop we might skip it because we think we have seen the method
// already but we haven't grabbed the declared type generic arguments yet.
foreach (var t in TypeCache.GetTypesWithAttribute<BurstCompatibleAttribute>())
{
if (!m_AssembliesToVerify.Contains(t.Assembly.GetName().Name))
continue;
foreach (var typeAttr in t.GetCustomAttributes<BurstCompatibleAttribute>())
{
// As we go through all the types with [BurstCompatible] on them, remember their GenericTypeArguments
// in case we encounter the type again when we do the direct method search later. When we do the
// direct method search, we don't have as easy access to the [BurstCompatible] attribute on the
// type so just remember this now to make life easier.
declaredTypeGenericArguments[t] = typeAttr.GenericTypeArguments;
const BindingFlags flags = BindingFlags.Static | BindingFlags.Instance | BindingFlags.Public |
BindingFlags.NonPublic | BindingFlags.DeclaredOnly;
foreach (var c in t.GetConstructors(flags))
{
var attributes = c.GetCustomAttributes<BurstCompatibleAttribute>().ToArray();
if (attributes.Length == 0)
{
MaybeAddMethod(c, EmptyGenericTypeArguments, typeAttr.GenericTypeArguments, typeAttr.RequiredUnityDefine, c, typeAttr.CompileTarget);
}
else
{
foreach (var methodAttr in attributes)
{
MaybeAddMethod(c, methodAttr.GenericTypeArguments, typeAttr.GenericTypeArguments, methodAttr.RequiredUnityDefine ?? typeAttr.RequiredUnityDefine, c, methodAttr.CompileTarget);
}
}
}
foreach (var m in t.GetMethods(flags))
{
// If this is a property getter/setter, the attributes will be stored on the property itself, not
// the method.
MemberInfo attributeHolder = m;
if (m.IsSpecialName && (m.Name.StartsWith("get_") || m.Name.StartsWith("set_")))
{
attributeHolder = m.DeclaringType.GetProperty(m.Name.Substring("get_".Length), flags);
Debug.Assert(attributeHolder != null, $"Failed to find property for {m.Name} in {m.DeclaringType.Name}");
}
var attributes = attributeHolder.GetCustomAttributes<BurstCompatibleAttribute>().ToArray();
if (attributes.Length == 0)
{
MaybeAddMethod(m, EmptyGenericTypeArguments, typeAttr.GenericTypeArguments, typeAttr.RequiredUnityDefine, attributeHolder, typeAttr.CompileTarget);
}
else
{
foreach (var methodAttr in attributes)
{
MaybeAddMethod(m, methodAttr.GenericTypeArguments, typeAttr.GenericTypeArguments, methodAttr.RequiredUnityDefine ?? typeAttr.RequiredUnityDefine, attributeHolder, methodAttr.CompileTarget);
}
}
}
}
}
// Direct method search.
foreach (var m in TypeCache.GetMethodsWithAttribute<BurstCompatibleAttribute>())
{
if (!m_AssembliesToVerify.Contains(m.DeclaringType.Assembly.GetName().Name))
continue;
// Look up the GenericTypeArguments on the declaring type that we probably got earlier. If the key
// doesn't exist then it means [BurstCompatible] was only on the method and not the type, which is fine
// but if [BurstCompatible] was on the type we should go ahead and use whatever GenericTypeArguments
// it may have had.
var typeGenericArguments = declaredTypeGenericArguments.ContainsKey(m.DeclaringType) ? declaredTypeGenericArguments[m.DeclaringType] : EmptyGenericTypeArguments;
foreach (var attr in m.GetCustomAttributes<BurstCompatibleAttribute>())
{
MaybeAddMethod(m, attr.GenericTypeArguments, typeGenericArguments, attr.RequiredUnityDefine, m, attr.CompileTarget);
}
}
if (errorCount > 0)
{
methods = new MethodData[] {};
return false;
}
methods = result.ToArray();
Array.Sort(methods);
return true;
}
private static string GetSafeName(in MethodData methodData)
{
var method = methodData.methodBase;
return GetSafeName(method.DeclaringType, methodData) + "_" + r.Replace(method.Name, "__");
}
public static readonly Regex r = new Regex(@"[^A-Za-z_0-9]+");
private static string GetSafeName(Type t, in MethodData methodData)
{
var b = new StringBuilder();
GetFullTypeName(t, b, methodData);
return r.Replace(b.ToString(), "__");
}
Assembly GetAssemblyByName(string name)
{
var assemblies = AppDomain.CurrentDomain.GetAssemblies();
return assemblies.SingleOrDefault(assembly => assembly.GetName().Name == name);
}
private StreamWriter m_BurstCompileLogs;
// This is a log handler to save all the logs during burst compilation and eventually write to a file
// so it is easier to see all the logs without truncation in the test runner.
void LogHandler(string logString, string stackTrace, LogType type)
{
m_BurstCompileLogs.WriteLine(logString);
}
[UnityTest]
public IEnumerator CompatibilityTests()
{
int runCount = 0;
int successCount = 0;
bool playerBuildSucceeded = false;
var playerBuildTime = new TimeSpan();
var compileFunctionPointerTime = new TimeSpan();
try
{
if (!UpdateGeneratedFile(m_GeneratedCodePath, out var generatedCount))
{
yield break;
}
// Make another copy of the generated code and put it in Temp so it's easier to inspect.
var debugCodeGenTempDest = Path.Combine(m_TempBurstCompatibilityPath, "generated.cs");
Directory.CreateDirectory(m_TempBurstCompatibilityPath);
File.Copy(m_GeneratedCodePath, debugCodeGenTempDest, true);
Debug.Log($"Generated {generatedCount} Burst compatibility tests.");
Debug.Log($"You can inspect a copy of the generated code at: {Path.GetFullPath(debugCodeGenTempDest)}");
// BEWARE: this causes a domain reload and can cause variables to go null.
yield return new RecompileScripts();
var t = GetAssemblyByName(m_GeneratedCodeAssemblyName).GetType(s_GeneratedClassName);
if (t == null)
{
throw new ApplicationException($"could not find generated type {s_GeneratedClassName} in assembly {m_GeneratedCodeAssemblyName}");
}
var logPath = Path.Combine(m_TempBurstCompatibilityPath, "BurstCompileLog.txt");
m_BurstCompileLogs = File.CreateText(logPath);
Debug.Log($"Logs from Burst compilation written to: {Path.GetFullPath(logPath)}\n");
Application.logMessageReceived += LogHandler;
var stopwatch = new Stopwatch();
stopwatch.Start();
foreach (var m in t.GetMethods(BindingFlags.Public | BindingFlags.Static))
{
if (m.Name.StartsWith("BurstCompile_"))
{
++runCount;
try
{
m.Invoke(null, null);
++successCount;
}
catch (Exception ex)
{
Debug.LogException(ex);
}
}
}
stopwatch.Stop();
compileFunctionPointerTime = stopwatch.Elapsed;
var buildOptions = new BuildPlayerOptions();
buildOptions.target = EditorUserBuildSettings.activeBuildTarget;
buildOptions.locationPathName = FileUtil.GetUniqueTempPathInProject();
// TODO: https://unity3d.atlassian.net/browse/DOTS-4886
// Remove when fixed
// Made a development build due to a bug in the Editor causing Debug.isDebugBuild to be false
// on the next Domain reload after this build is made
buildOptions.options = BuildOptions.IncludeTestAssemblies | BuildOptions.Development;
var buildReport = BuildPipeline.BuildPlayer(buildOptions);
playerBuildSucceeded = buildReport.summary.result == BuildResult.Succeeded;
playerBuildTime = buildReport.summary.totalTime;
}
finally
{
Application.logMessageReceived -= LogHandler;
m_BurstCompileLogs?.Close();
Debug.Log($"Player build duration: {playerBuildTime.TotalSeconds} s.");
if (playerBuildSucceeded)
{
Debug.Log("Burst AOT compile via player build succeeded.");
}
else
{
Debug.LogError("Player build FAILED.");
}
Debug.Log($"Compile function pointer duration: {compileFunctionPointerTime.TotalSeconds} s.");
if (runCount != successCount)
{
Debug.LogError($"Burst compatibility tests failed; ran {runCount} editor tests, {successCount} OK, {runCount - successCount} FAILED.");
}
else
{
Debug.Log($"Ran {runCount} editor Burst compatible tests, all OK.");
}
AssetDatabase.DeleteAsset(m_GeneratedCodePath);
}
yield return new RecompileScripts();
}
}
}
#endif