Firstborn/Library/PackageCache/com.unity.inputsystem@1.4.4/Tests/TestFixture/InputTestFixture.cs

892 lines
40 KiB
C#
Raw Normal View History

2023-03-28 13:24:16 -04:00
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using UnityEngine.InputSystem.Controls;
using NUnit.Framework;
using NUnit.Framework.Constraints;
using NUnit.Framework.Internal;
using Unity.Collections;
using UnityEngine.InputSystem.LowLevel;
using UnityEngine.InputSystem.Utilities;
using UnityEngine.TestTools;
using UnityEngine.TestTools.Utils;
#if UNITY_EDITOR
using UnityEditor;
using UnityEngine.InputSystem.Editor;
#endif
////TODO: must allow running UnityTests which means we have to be able to get per-frame updates yet not receive input from native
////TODO: when running tests in players, make sure that remoting is turned off
////REVIEW: always enable event diagnostics in InputTestFixture?
namespace UnityEngine.InputSystem
{
/// <summary>
/// A test fixture for writing tests that use the input system. Can be derived from
/// or simply instantiated from another test fixture.
/// </summary>
/// <remarks>
/// The fixture will put the input system into a known state where it has only the
/// built-in set of basic layouts and no devices. The state of the system before
/// starting a test is recorded and restored when the test finishes.
///
/// <example>
/// <code>
/// public class MyInputTests : InputTestFixture
/// {
/// public override void Setup()
/// {
/// base.Setup();
///
/// InputSystem.RegisterLayout&lt;MyDevice&gt;();
/// }
///
/// [Test]
/// public void CanCreateMyDevice()
/// {
/// InputSystem.AddDevice&lt;MyDevice&gt;();
/// Assert.That(InputSystem.devices, Has.Exactly(1).TypeOf&lt;MyDevice&gt;());
/// }
/// }
/// </code>
/// </example>
///
/// The test fixture will also sever the tie of the input system to the Unity runtime.
/// This means that while the test fixture is active, the input system will not receive
/// input and device discovery or removal notifications from platform code. This ensures
/// that while the test is running, input that may be generated on the machine running
/// the test will not infer with it.
/// </remarks>
public class InputTestFixture
{
/// <summary>
/// Put <see cref="InputSystem"/> into a known state where it only has a basic set of
/// layouts and does not have any input devices.
/// </summary>
/// <remarks>
/// If you derive your own test fixture directly from InputTestFixture, this
/// method will automatically be called. If you embed InputTestFixture into
/// your fixture, you have to explicitly call this method yourself.
/// </remarks>
/// <seealso cref="TearDown"/>
[SetUp]
public virtual void Setup()
{
try
{
// Apparently, NUnit is reusing instances :(
m_KeyInfos = default;
m_IsUnityTest = default;
m_CurrentTest = default;
// Disable input debugger so we don't waste time responding to all the
// input system activity from the tests.
#if UNITY_EDITOR
InputDebuggerWindow.Disable();
#endif
runtime = new InputTestRuntime();
// Push current input system state on stack.
InputSystem.SaveAndReset(enableRemoting: false, runtime: runtime);
// Override the editor messing with logic like canRunInBackground and focus and
// make it behave like in the player.
#if UNITY_EDITOR
InputSystem.settings.editorInputBehaviorInPlayMode = InputSettings.EditorInputBehaviorInPlayMode.AllDeviceInputAlwaysGoesToGameView;
#endif
// For a [UnityTest] play mode test, we don't want editor updates interfering with the test,
// so turn them off.
#if UNITY_EDITOR
if (Application.isPlaying && IsUnityTest())
InputSystem.s_Manager.m_UpdateMask &= ~InputUpdateType.Editor;
#endif
// We use native collections in a couple places. We when leak them, we want to know where exactly
// the allocation came from so enable full leak detection in tests.
NativeLeakDetection.Mode = NativeLeakDetectionMode.EnabledWithStackTrace;
// For [UnityTest]s, we need to process input in sync with the player loop. However, InputTestRuntime
// is divorced from the player loop by virtue of not being tied into NativeInputSystem. Listen
// for NativeInputSystem.Update here and trigger input processing in our isolated InputSystem.
// This is irrelevant for normal [Test]s but for [UnityTest]s that run over several frames, it's crucial.
// NOTE: We're severing the tie the previous InputManager had to NativeInputRuntime here. This means that
// device removal events that happen to occur while tests are running will get lost.
NativeInputRuntime.instance.onUpdate =
(InputUpdateType updateType, ref InputEventBuffer buffer) =>
{
if (InputSystem.s_Manager.ShouldRunUpdate(updateType))
InputSystem.Update(updateType);
// We ignore any input coming from native.
buffer.Reset();
};
NativeInputRuntime.instance.onShouldRunUpdate =
updateType => true;
#if UNITY_EDITOR
m_OnPlayModeStateChange = OnPlayModeStateChange;
EditorApplication.playModeStateChanged += m_OnPlayModeStateChange;
#endif
// Always want to merge by default
InputSystem.settings.disableRedundantEventsMerging = false;
}
catch (Exception exception)
{
Debug.LogError("Failed to set up input system for test " + TestContext.CurrentContext.Test.Name);
Debug.LogException(exception);
throw;
}
m_Initialized = true;
if (InputSystem.devices.Count > 0)
Assert.Fail("Input system should not have devices after reset");
}
/// <summary>
/// Restore the state of the input system it had when the test was started.
/// </summary>
/// <seealso cref="Setup"/>
[TearDown]
public virtual void TearDown()
{
if (!m_Initialized)
return;
try
{
InputSystem.Restore();
runtime.Dispose();
// Unhook from play mode state changes.
#if UNITY_EDITOR
if (m_OnPlayModeStateChange != null)
EditorApplication.playModeStateChanged -= m_OnPlayModeStateChange;
#endif
// Re-enable input debugger.
#if UNITY_EDITOR
InputDebuggerWindow.Enable();
#endif
}
catch (Exception exception)
{
Debug.LogError("Failed to shut down and restore input system after test " + TestContext.CurrentContext.Test.Name);
Debug.LogException(exception);
throw;
}
m_Initialized = false;
}
private bool? m_IsUnityTest;
private Test m_CurrentTest;
// True if the current test is a [UnityTest].
private bool IsUnityTest()
{
// We cache this value so that any call after the first in a test no
// longer allocates GC memory. Otherwise we'll run into trouble with
// DoesNotAllocate tests.
var test = TestContext.CurrentTestExecutionContext.CurrentTest;
if (m_IsUnityTest.HasValue && m_CurrentTest == test)
return m_IsUnityTest.Value;
var className = test.ClassName;
var methodName = test.MethodName;
// Doesn't seem like there's a proper way to get the current test method based on
// the information provided by NUnit (see https://github.com/nunit/nunit/issues/3354).
var type = Type.GetType(className);
if (type == null)
{
foreach (var assembly in AppDomain.CurrentDomain.GetAssemblies())
{
type = assembly.GetType(className);
if (type != null)
break;
}
}
if (type == null)
{
m_IsUnityTest = false;
}
else
{
var method = type.GetMethod(methodName);
m_IsUnityTest = method?.GetCustomAttribute<UnityTestAttribute>() != null;
}
m_CurrentTest = test;
return m_IsUnityTest.Value;
}
#if UNITY_EDITOR
private Action<PlayModeStateChange> m_OnPlayModeStateChange;
private void OnPlayModeStateChange(PlayModeStateChange change)
{
if (change == PlayModeStateChange.ExitingPlayMode && m_Initialized)
TearDown();
}
#endif
// ReSharper disable once MemberCanBeProtected.Global
public static void AssertButtonPress<TState>(InputDevice device, TState state, params ButtonControl[] buttons)
where TState : struct, IInputStateTypeInfo
{
// Update state.
InputSystem.QueueStateEvent(device, state);
InputSystem.Update();
// Now verify that only the buttons we expect to be pressed are pressed.
foreach (var control in device.allControls)
{
if (!(control is ButtonControl controlAsButton))
continue;
var isInList = buttons.Contains(controlAsButton);
if (!isInList)
Assert.That(controlAsButton.isPressed, Is.False,
$"Expected button {controlAsButton} to NOT be pressed");
else
Assert.That(controlAsButton.isPressed, Is.True,
$"Expected button {controlAsButton} to be pressed");
}
}
public static void AssertStickValues(StickControl stick, Vector2 stickValue, float up, float down, float left,
float right)
{
Assert.That(stick.ReadUnprocessedValue(), Is.EqualTo(stickValue));
Assert.That(stick.up.ReadUnprocessedValue(), Is.EqualTo(up).Within(0.0001), "Incorrect 'up' value");
Assert.That(stick.down.ReadUnprocessedValue(), Is.EqualTo(down).Within(0.0001), "Incorrect 'down' value");
Assert.That(stick.left.ReadUnprocessedValue(), Is.EqualTo(left).Within(0.0001), "Incorrect 'left' value");
Assert.That(stick.right.ReadUnprocessedValue(), Is.EqualTo(right).Within(0.0001), "Incorrect 'right' value");
}
private Dictionary<Key, Tuple<string, int>> m_KeyInfos;
private bool m_Initialized;
/// <summary>
/// Set <see cref="Keyboard.keyboardLayout"/> of the given keyboard.
/// </summary>
/// <param name="name">Name of the keyboard layout to switch to.</param>
/// <param name="keyboard">Keyboard to switch layout on. If <c>null</c>, <see cref="Keyboard.current"/> is used.</param>
/// <exception cref="ArgumentException"><paramref name="keyboard"/> and <see cref="Keyboard.current"/> are both <c>null</c>.</exception>
/// <remarks>
/// Also queues and immediately processes an <see cref="DeviceConfigurationEvent"/> for the keyboard.
/// </remarks>
public unsafe void SetKeyboardLayout(string name, Keyboard keyboard = null)
{
if (keyboard == null)
{
keyboard = Keyboard.current;
if (keyboard == null)
throw new ArgumentException("No keyboard has been created and no keyboard has been given", nameof(keyboard));
}
runtime.SetDeviceCommandCallback(keyboard, (id, command) =>
{
if (id == QueryKeyboardLayoutCommand.Type)
{
var commandPtr = (QueryKeyboardLayoutCommand*)command;
commandPtr->WriteLayoutName(name);
return InputDeviceCommand.GenericSuccess;
}
return InputDeviceCommand.GenericFailure;
});
// Make sure caches on keys are flushed.
InputSystem.QueueConfigChangeEvent(Keyboard.current);
InputSystem.Update();
}
/// <summary>
/// Set the <see cref="InputControl.displayName"/> of <paramref name="key"/> on the current
/// <see cref="Keyboard"/> to be <paramref name="displayName"/>.
/// </summary>
/// <param name="key">Key to set the display name for.</param>
/// <param name="displayName">Display name for the key.</param>
/// <param name="scanCode">Optional <see cref="KeyControl.scanCode"/> to report for the key.</param>
/// <remarks>
/// Automatically adds a <see cref="Keyboard"/> if none has been added yet.
/// </remarks>
public unsafe void SetKeyInfo(Key key, string displayName, int scanCode = 0)
{
if (Keyboard.current == null)
InputSystem.AddDevice<Keyboard>();
if (m_KeyInfos == null)
{
m_KeyInfos = new Dictionary<Key, Tuple<string, int>>();
runtime.SetDeviceCommandCallback(Keyboard.current,
(id, commandPtr) =>
{
if (commandPtr->type == QueryKeyNameCommand.Type)
{
var keyNameCommand = (QueryKeyNameCommand*)commandPtr;
if (m_KeyInfos.TryGetValue((Key)keyNameCommand->scanOrKeyCode, out var info))
{
keyNameCommand->scanOrKeyCode = info.Item2;
StringHelpers.WriteStringToBuffer(info.Item1, (IntPtr)keyNameCommand->nameBuffer,
QueryKeyNameCommand.kMaxNameLength);
}
return QueryKeyNameCommand.kSize;
}
return InputDeviceCommand.GenericFailure;
});
}
m_KeyInfos[key] = new Tuple<string, int>(displayName, scanCode);
// Make sure caches on keys are flushed.
InputSystem.QueueConfigChangeEvent(Keyboard.current);
InputSystem.Update();
}
/// <summary>
/// Add support for <see cref="QueryCanRunInBackground"/> to <paramref name="device"/> and return
/// <paramref name="value"/> as <see cref="QueryCanRunInBackground.canRunInBackground"/>.
/// </summary>
/// <param name="device"></param>
internal unsafe void SetCanRunInBackground(InputDevice device, bool canRunInBackground = true)
{
runtime.SetDeviceCommandCallback(device, (id, command) =>
{
if (command->type == QueryCanRunInBackground.Type)
{
((QueryCanRunInBackground*)command)->canRunInBackground = canRunInBackground;
return InputDeviceCommand.GenericSuccess;
}
return InputDeviceCommand.GenericFailure;
});
}
public ActionConstraint Started(InputAction action, InputControl control = null, double? time = null, object value = null)
{
return new ActionConstraint(InputActionPhase.Started, action, control, time: time, duration: 0, value: value);
}
public ActionConstraint Started<TValue>(InputAction action, InputControl<TValue> control, TValue value, double? time = null)
where TValue : struct
{
return new ActionConstraint(InputActionPhase.Started, action, control, value, time: time, duration: 0);
}
public ActionConstraint Performed(InputAction action, InputControl control = null, double? time = null, double? duration = null, object value = null)
{
return new ActionConstraint(InputActionPhase.Performed, action, control, time: time, duration: duration, value: value);
}
public ActionConstraint Performed<TValue>(InputAction action, InputControl<TValue> control, TValue value, double? time = null, double? duration = null)
where TValue : struct
{
return new ActionConstraint(InputActionPhase.Performed, action, control, value, time: time, duration: duration);
}
public ActionConstraint Canceled(InputAction action, InputControl control = null, double? time = null, double? duration = null, object value = null)
{
return new ActionConstraint(InputActionPhase.Canceled, action, control, time: time, duration: duration, value: value);
}
public ActionConstraint Canceled<TValue>(InputAction action, InputControl<TValue> control, TValue value, double? time = null, double? duration = null)
where TValue : struct
{
return new ActionConstraint(InputActionPhase.Canceled, action, control, value, time: time, duration: duration);
}
public ActionConstraint Started<TInteraction>(InputAction action, InputControl control = null, object value = null, double? time = null)
where TInteraction : IInputInteraction
{
return new ActionConstraint(InputActionPhase.Started, action, control, interaction: typeof(TInteraction), time: time,
duration: 0, value: value);
}
public ActionConstraint Performed<TInteraction>(InputAction action, InputControl control = null, object value = null, double? time = null, double? duration = null)
where TInteraction : IInputInteraction
{
return new ActionConstraint(InputActionPhase.Performed, action, control, interaction: typeof(TInteraction), time: time,
duration: duration, value: value);
}
public ActionConstraint Canceled<TInteraction>(InputAction action, InputControl control = null, object value = null, double? time = null, double? duration = null)
where TInteraction : IInputInteraction
{
return new ActionConstraint(InputActionPhase.Canceled, action, control, interaction: typeof(TInteraction), time: time,
duration: duration, value: value);
}
////REVIEW: Should we determine queueEventOnly automatically from whether we're in a UnityTest?
// ReSharper disable once MemberCanBeProtected.Global
public void Press(ButtonControl button, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
{
Set(button, 1, time, timeOffset, queueEventOnly: queueEventOnly);
}
// ReSharper disable once MemberCanBeProtected.Global
public void Release(ButtonControl button, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
{
Set(button, 0, time, timeOffset, queueEventOnly: queueEventOnly);
}
// ReSharper disable once MemberCanBePrivate.Global
public void PressAndRelease(ButtonControl button, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
{
Press(button, time, timeOffset, queueEventOnly: true); // This one is always just a queue.
Release(button, time, timeOffset, queueEventOnly: queueEventOnly);
}
// ReSharper disable once MemberCanBeProtected.Global
public void Click(ButtonControl button, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
{
PressAndRelease(button, time, timeOffset, queueEventOnly: queueEventOnly);
}
/// <summary>
/// Set the control with the given <paramref name="path"/> on <paramref name="device"/> to the given <paramref name="state"/>
/// by sending a state event with the value to the device.
/// </summary>
/// <param name="device">Device on which to find a control.</param>
/// <param name="path">Path of the control on the device.</param>
/// <param name="state">New state for the control.</param>
/// <param name="time">Timestamp to use for the state event. If -1 (default), current time is used (see <see cref="InputTestFixture.currentTime"/>).</param>
/// <param name="timeOffset">Offset to apply to the current time. This is an alternative to <paramref name="time"/>. By default, no offset is applied.</param>
/// <param name="queueEventOnly">If true, no <see cref="InputSystem.Update"/> will be performed after queueing the event. This will only put
/// the state event on the event queue and not do anything else. The default is to call <see cref="InputSystem.Update"/> after queuing the event.
/// Note that not issuing an update means the state of the device will not change yet. This may affect subsequent Set/Press/Release/etc calls
/// as they will not yet see the state change.
///
/// Note that this parameter will be ignored if the test is a <c>[UnityTest]</c>. Multi-frame
/// playmode tests will automatically process input as part of the Unity player loop.</param>
/// <typeparam name="TValue">Value type of the control.</typeparam>
/// <example>
/// <code>
/// var device = InputSystem.AddDevice("TestDevice");
/// Set&lt;ButtonControl&gt;(device, "button", 1);
/// Set&lt;AxisControl&gt;(device, "{Primary2DMotion}/x", 123.456f);
/// </code>
/// </example>
public void Set<TValue>(InputDevice device, string path, TValue state, double time = -1, double timeOffset = 0,
bool queueEventOnly = false)
where TValue : struct
{
if (device == null)
throw new ArgumentNullException(nameof(device));
if (string.IsNullOrEmpty(path))
throw new ArgumentNullException(nameof(path));
var control = (InputControl<TValue>)device[path];
Set(control, state, time, timeOffset, queueEventOnly);
}
/// <summary>
/// Set the control to the given value by sending a state event with the value to the
/// control's device.
/// </summary>
/// <param name="control">An input control on a device that has been added to the system.</param>
/// <param name="state">New value for the input control.</param>
/// <param name="time">Timestamp to use for the state event. If -1 (default), current time is used (see <see cref="InputTestFixture.currentTime"/>).</param>
/// <param name="timeOffset">Offset to apply to the current time. This is an alternative to <paramref name="time"/>. By default, no offset is applied.</param>
/// <param name="queueEventOnly">If true, no <see cref="InputSystem.Update"/> will be performed after queueing the event. This will only put
/// the state event on the event queue and not do anything else. The default is to call <see cref="InputSystem.Update"/> after queuing the event.
/// Note that not issuing an update means the state of the device will not change yet. This may affect subsequent Set/Press/Release/etc calls
/// as they will not yet see the state change.
///
/// Note that this parameter will be ignored if the test is a <c>[UnityTest]</c>. Multi-frame
/// playmode tests will automatically process input as part of the Unity player loop.</param>
/// <typeparam name="TValue">Value type of the given control.</typeparam>
/// <example>
/// <code>
/// var gamepad = InputSystem.AddDevice&lt;Gamepad&gt;();
/// Set(gamepad.leftButton, 1);
/// </code>
/// </example>
public void Set<TValue>(InputControl<TValue> control, TValue state, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
where TValue : struct
{
if (control == null)
throw new ArgumentNullException(nameof(control));
if (!control.device.added)
throw new ArgumentException(
$"Device of control '{control}' has not been added to the system", nameof(control));
if (IsUnityTest())
queueEventOnly = true;
void SetUpAndQueueEvent(InputEventPtr eventPtr)
{
eventPtr.time = (time >= 0 ? time : InputState.currentTime) + timeOffset;
control.WriteValueIntoEvent(state, eventPtr);
InputSystem.QueueEvent(eventPtr);
}
// Touchscreen does not support delta events involving TouchState.
if (control is TouchControl)
{
using (StateEvent.From(control.device, out var eventPtr))
SetUpAndQueueEvent(eventPtr);
}
else
{
// We use delta state events rather than full state events here to mitigate the following problem:
// Grabbing state from the device will preserve the current values of controls covered in the state.
// However, running an update may alter the value of one or more of those controls. So with a full
// state event, we may be writing outdated data back into the device. For example, in the case of delta
// controls which will reset in OnBeforeUpdate().
//
// Using delta events, we may still grab state outside of just the one control in case we're looking at
// bit-addressed controls but at least we can avoid the problem for the majority of controls.
using (DeltaStateEvent.From(control, out var eventPtr))
SetUpAndQueueEvent(eventPtr);
}
if (!queueEventOnly)
InputSystem.Update();
}
public void Move(InputControl<Vector2> positionControl, Vector2 position, Vector2? delta = null, double time = -1, double timeOffset = 0, bool queueEventOnly = false)
{
Set(positionControl, position, time: time, timeOffset: timeOffset, queueEventOnly: true);
var deltaControl = (Vector2Control)positionControl.device.TryGetChildControl("delta");
if (deltaControl != null)
Set(deltaControl, delta ?? position - positionControl.ReadValue(), time: time, timeOffset: timeOffset, queueEventOnly: true);
if (!queueEventOnly)
InputSystem.Update();
}
////TODO: obsolete this one in 2.0 and use pressure=1 default value
public void BeginTouch(int touchId, Vector2 position, bool queueEventOnly = false, Touchscreen screen = null,
double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Began, position, 1, queueEventOnly: queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
public void BeginTouch(int touchId, Vector2 position, float pressure, bool queueEventOnly = false, Touchscreen screen = null,
double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Began, position, pressure, queueEventOnly: queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
////TODO: obsolete this one in 2.0 and use pressure=1 default value
public void MoveTouch(int touchId, Vector2 position, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Moved, position, 1, delta, queueEventOnly: queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
public void MoveTouch(int touchId, Vector2 position, float pressure, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Moved, position, pressure, delta, queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
////TODO: obsolete this one in 2.0 and use pressure=1 default value
public void EndTouch(int touchId, Vector2 position, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Ended, position, 1, delta, queueEventOnly: queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
public void EndTouch(int touchId, Vector2 position, float pressure, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Ended, position, pressure, delta, queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
////TODO: obsolete this one in 2.0 and use pressure=1 default value
public void CancelTouch(int touchId, Vector2 position, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Canceled, position, delta, queueEventOnly: queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
public void CancelTouch(int touchId, Vector2 position, float pressure, Vector2 delta = default, bool queueEventOnly = false,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, TouchPhase.Canceled, position, pressure, delta, queueEventOnly, screen: screen, time: time, timeOffset: timeOffset);
}
////TODO: obsolete this one in 2.0 and use pressure=1 default value
public void SetTouch(int touchId, TouchPhase phase, Vector2 position, Vector2 delta = default,
bool queueEventOnly = true, Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
SetTouch(touchId, phase, position, 1, delta: delta, queueEventOnly: queueEventOnly, screen: screen, time: time,
timeOffset: timeOffset);
}
public void SetTouch(int touchId, TouchPhase phase, Vector2 position, float pressure, Vector2 delta = default, bool queueEventOnly = true,
Touchscreen screen = null, double time = -1, double timeOffset = 0)
{
if (screen == null)
{
screen = Touchscreen.current;
if (screen == null)
screen = InputSystem.AddDevice<Touchscreen>();
}
InputSystem.QueueStateEvent(screen, new TouchState
{
touchId = touchId,
phase = phase,
position = position,
delta = delta,
pressure = pressure,
}, (time >= 0 ? time : InputState.currentTime) + timeOffset);
if (!queueEventOnly)
InputSystem.Update();
}
public void Trigger<TValue>(InputAction action, InputControl<TValue> control, TValue value)
where TValue : struct
{
throw new NotImplementedException();
}
/// <summary>
/// Perform the input action without having to know what it is bound to.
/// </summary>
/// <param name="action">An input action that is currently enabled and has controls it is bound to.</param>
/// <remarks>
/// Blindly triggering an action requires making a few assumptions. Actions are not built to be able to trigger
/// without any input. This means that this method has to generate input on a control that the action is bound to.
///
/// Note that this method has no understanding of the interactions that may be present on the action and thus
/// does not know how they may affect the triggering of the action.
/// </remarks>
public void Trigger(InputAction action)
{
if (action == null)
throw new ArgumentNullException(nameof(action));
if (!action.enabled)
throw new ArgumentException(
$"Action '{action}' must be enabled in order to be able to trigger it", nameof(action));
var controls = action.controls;
if (controls.Count == 0)
throw new ArgumentException(
$"Action '{action}' must be bound to controls in order to be able to trigger it", nameof(action));
// See if we have a button we can trigger.
for (var i = 0; i < controls.Count; ++i)
{
if (!(controls[i] is ButtonControl button))
continue;
// Press and release button.
Set(button, 1);
Set(button, 0);
return;
}
// See if we have an axis we can slide a bit.
for (var i = 0; i < controls.Count; ++i)
{
if (!(controls[i] is AxisControl axis))
continue;
// We do, so nudge its value a bit.
Set(axis, axis.ReadValue() + 0.01f);
return;
}
////TODO: support a wider range of controls
throw new NotImplementedException();
}
/// <summary>
/// The input runtime used during testing.
/// </summary>
internal InputTestRuntime runtime { get; private set; }
/// <summary>
/// Get or set the current time used by the input system.
/// </summary>
/// <value>Current time used by the input system.</value>
public double currentTime
{
get => runtime.currentTime - runtime.currentTimeOffsetToRealtimeSinceStartup;
set
{
runtime.currentTime = value + runtime.currentTimeOffsetToRealtimeSinceStartup;
runtime.dontAdvanceTimeNextDynamicUpdate = true;
}
}
internal float unscaledGameTime
{
get => runtime.unscaledGameTime;
set
{
runtime.unscaledGameTime = value;
runtime.dontAdvanceUnscaledGameTimeNextDynamicUpdate = true;
}
}
public class ActionConstraint : Constraint
{
public InputActionPhase phase { get; set; }
public double? time { get; set; }
public double? duration { get; set; }
public InputAction action { get; set; }
public InputControl control { get; set; }
public object value { get; set; }
public Type interaction { get; set; }
private readonly List<ActionConstraint> m_AndThen = new List<ActionConstraint>();
public ActionConstraint(InputActionPhase phase, InputAction action, InputControl control, object value = null, Type interaction = null, double? time = null, double? duration = null)
{
this.phase = phase;
this.time = time;
this.duration = duration;
this.action = action;
this.control = control;
this.value = value;
this.interaction = interaction;
var interactionText = string.Empty;
if (interaction != null)
interactionText = InputInteraction.GetDisplayName(interaction);
var actionName = action.actionMap != null ? $"{action.actionMap}/{action.name}" : action.name;
// Use same text format as InputActionTrace for easier comparison.
var description = $"{{ action={actionName} phase={phase}";
if (time != null)
description += $" time={time}";
if (control != null)
description += $" control={control}";
if (value != null)
description += $" value={value}";
if (interaction != null)
description += $" interaction={interactionText}";
if (duration != null)
description += $" duration={duration}";
description += " }";
Description = description;
}
public override ConstraintResult ApplyTo(object actual)
{
var trace = (InputActionTrace)actual;
var actions = trace.ToArray();
if (actions.Length == 0)
return new ConstraintResult(this, actual, false);
if (!Verify(actions[0]))
return new ConstraintResult(this, actual, false);
var i = 1;
foreach (var constraint in m_AndThen)
{
if (i >= actions.Length || !constraint.Verify(actions[i]))
return new ConstraintResult(this, actual, false);
++i;
}
if (i != actions.Length)
return new ConstraintResult(this, actual, false);
return new ConstraintResult(this, actual, true);
}
private bool Verify(InputActionTrace.ActionEventPtr eventPtr)
{
// NOTE: Using explicit "return false" branches everywhere for easier setting of breakpoints.
if (eventPtr.action != action ||
eventPtr.phase != phase)
return false;
// Check time.
if (time != null && !Mathf.Approximately((float)time.Value, (float)eventPtr.time))
return false;
// Check duration.
if (duration != null && !Mathf.Approximately((float)duration.Value, (float)eventPtr.duration))
return false;
// Check control.
if (control != null && eventPtr.control != control)
return false;
// Check interaction.
if (interaction != null && (eventPtr.interaction == null ||
!interaction.IsInstanceOfType(eventPtr.interaction)))
return false;
// Check value.
if (value != null)
{
var val = eventPtr.ReadValueAsObject();
if (val is float f)
{
if (!Mathf.Approximately(f, Convert.ToSingle(value)))
return false;
}
else if (val is double d)
{
if (!Mathf.Approximately((float)d, (float)Convert.ToDouble(value)))
return false;
}
else if (val is Vector2 v2)
{
if (!Vector2EqualityComparer.Instance.Equals(v2, value.As<Vector2>()))
return false;
}
else if (val is Vector3 v3)
{
if (!Vector3EqualityComparer.Instance.Equals(v3, value.As<Vector3>()))
return false;
}
else if (!val.Equals(value))
return false;
}
return true;
}
public ActionConstraint AndThen(ActionConstraint constraint)
{
m_AndThen.Add(constraint);
Description += " and\n";
Description += constraint.Description;
return this;
}
}
#if UNITY_EDITOR
internal void SimulateDomainReload()
{
// This quite invasively goes into InputSystem internals. Unfortunately, we
// have no proper way of simulating domain reloads ATM. So we directly call various
// internal methods here in a sequence similar to what we'd get during a domain reload.
InputSystem.s_SystemObject.OnBeforeSerialize();
InputSystem.s_SystemObject = null;
InputSystem.InitializeInEditor(runtime);
}
#endif
}
}