Singularity/Library/PackageCache/com.unity.render-pipelines..../Editor/Lighting/ProbeVolume/ProbePlacement.cs

670 lines
37 KiB
C#
Raw Normal View History

2024-05-06 14:45:45 -04:00
#if UNITY_EDITOR
using System.Collections.Generic;
using UnityEditor;
using UnityEngine.SceneManagement;
using UnityEngine;
using UnityEngine.Rendering;
using UnityEngine.Experimental.Rendering;
using System.Linq;
using UnityEngine.Profiling;
using System;
namespace UnityEngine.Experimental.Rendering
{
using Brick = ProbeBrickIndex.Brick;
class ProbePlacement
{
const int k_MaxDistanceFieldTextureSize = 128;
const int k_MaxSubdivisionInSubCell = 4;
// The UAV binding index 4 isn't in use when we bake the probes and doesn't crash unity.
const int k_RandomWriteBindingIndex = 4;
[GenerateHLSL(needAccessors = false)]
struct GPUProbeVolumeOBB
{
public Vector3 corner;
public Vector3 X;
public Vector3 Y;
public Vector3 Z;
public int minControllerSubdivLevel;
public int maxControllerSubdivLevel;
public int maxSubdivLevelInsideVolume;
public float geometryDistanceOffset;
}
public class GPUSubdivisionContext : IDisposable
{
public int maxSubdivisionLevel;
public int maxBrickCountPerAxis;
public int maxSubdivisionLevelInSubCell;
public int maxBrickCountPerAxisInSubCell;
public RenderTexture sceneSDF;
public RenderTexture sceneSDF2;
public RenderTexture dummyRenderTarget;
public ComputeBuffer probeVolumesBuffer;
public ComputeBuffer[] bricksBuffers;
public ComputeBuffer[] readbackCountBuffers;
public Vector3[] brickPositions;
public GPUSubdivisionContext(int probeVolumeCount, int maxSubdivisionLevelFromAsset)
{
// Find the maximum subdivision level we can have in this cell (avoid extra work if not needed)
this.maxSubdivisionLevel = maxSubdivisionLevelFromAsset - 1; // remove 1 because the last subdiv level is the cell size
maxBrickCountPerAxis = (int)Mathf.Pow(3, maxSubdivisionLevel); // cells are always cube
// jump flooding algorithm works best with POT textures
int sceneSDFSize = Mathf.NextPowerOfTwo(maxBrickCountPerAxis);
// Limit the max resolution of the texture to avoid out of memory, for bigger cells, we split them into sub-cells for distance field computation.
sceneSDFSize = Mathf.Clamp(sceneSDFSize, 64, k_MaxDistanceFieldTextureSize);
RenderTextureDescriptor distanceFieldTextureDescriptor = new RenderTextureDescriptor
{
height = sceneSDFSize,
width = sceneSDFSize,
volumeDepth = sceneSDFSize,
enableRandomWrite = true,
dimension = TextureDimension.Tex3D,
graphicsFormat = Experimental.Rendering.GraphicsFormat.R16G16B16A16_SFloat, // we need 16 bit precision for the distance field
msaaSamples = 1,
};
sceneSDF = RenderTexture.GetTemporary(distanceFieldTextureDescriptor);
sceneSDF.name = "Scene SDF";
sceneSDF.Create();
sceneSDF2 = RenderTexture.GetTemporary(distanceFieldTextureDescriptor);
// We need mipmaps for the second map to store the probe volume min and max subdivision
sceneSDF2.useMipMap = true;
sceneSDF2.autoGenerateMips = false;
sceneSDF2.name = "Scene SDF Double Buffer";
sceneSDF2.Create();
// Dummy render texture to bind during the voxelization of meshes
dummyRenderTarget = RenderTexture.GetTemporary(sceneSDFSize, sceneSDFSize, 0, GraphicsFormat.R8_SNorm);
int stride = System.Runtime.InteropServices.Marshal.SizeOf(typeof(GPUProbeVolumeOBB));
probeVolumesBuffer = new ComputeBuffer(probeVolumeCount, stride, ComputeBufferType.Structured);
// Allocate one readback and bricks buffer per subdivision level
maxSubdivisionLevelInSubCell = Mathf.Min(maxSubdivisionLevel, k_MaxSubdivisionInSubCell);
maxBrickCountPerAxisInSubCell = (int)Mathf.Pow(3, maxSubdivisionLevelInSubCell);
bricksBuffers = new ComputeBuffer[maxSubdivisionLevelInSubCell + 1];
readbackCountBuffers = new ComputeBuffer[maxSubdivisionLevelInSubCell + 1];
for (int i = 0; i <= maxSubdivisionLevelInSubCell; i++)
{
int brickCountPerAxis = (int)Mathf.Pow(3, maxSubdivisionLevelInSubCell - i);
bricksBuffers[i] = new ComputeBuffer(brickCountPerAxis * brickCountPerAxis * brickCountPerAxis, sizeof(float) * 3, ComputeBufferType.Append);
readbackCountBuffers[i] = new ComputeBuffer(1, sizeof(int), ComputeBufferType.Raw);
}
brickPositions = new Vector3[maxBrickCountPerAxisInSubCell * maxBrickCountPerAxisInSubCell * maxBrickCountPerAxisInSubCell];
}
public void Dispose()
{
RenderTexture.ReleaseTemporary(sceneSDF);
RenderTexture.ReleaseTemporary(sceneSDF2);
RenderTexture.ReleaseTemporary(dummyRenderTarget);
probeVolumesBuffer.Release();
for (int i = 0; i <= maxSubdivisionLevelInSubCell; i++)
{
bricksBuffers[i].Release();
readbackCountBuffers[i].Release();
}
}
}
static readonly int _BricksToClear = Shader.PropertyToID("_BricksToClear");
static readonly int _Output = Shader.PropertyToID("_Output");
static readonly int _OutputSize = Shader.PropertyToID("_OutputSize");
static readonly int _VolumeWorldOffset = Shader.PropertyToID("_VolumeWorldOffset");
static readonly int _VolumeSize = Shader.PropertyToID("_VolumeSize");
static readonly int _AxisSwizzle = Shader.PropertyToID("_AxisSwizzle");
static readonly int _Size = Shader.PropertyToID("_Size");
static readonly int _Input = Shader.PropertyToID("_Input");
static readonly int _Offset = Shader.PropertyToID("_Offset");
static readonly int _ProbeVolumes = Shader.PropertyToID("_ProbeVolumes");
static readonly int _ProbeVolumeCount = Shader.PropertyToID("_ProbeVolumeCount");
static readonly int _MaxBrickSize = Shader.PropertyToID("_MaxBrickSize");
static readonly int _VolumeOffsetInBricks = Shader.PropertyToID("_VolumeOffsetInBricks");
static readonly int _Bricks = Shader.PropertyToID("_Bricks");
static readonly int _SubdivisionLevel = Shader.PropertyToID("_SubdivisionLevel");
static readonly int _MaxSubdivisionLevel = Shader.PropertyToID("_MaxSubdivisionLevel");
static readonly int _VolumeSizeInBricks = Shader.PropertyToID("_VolumeSizeInBricks");
static readonly int _SDFSize = Shader.PropertyToID("_SDFSize");
static readonly int _ProbeVolumeData = Shader.PropertyToID("_ProbeVolumeData");
static readonly int _BrickSize = Shader.PropertyToID("_BrickSize");
static readonly int _ClearValue = Shader.PropertyToID("_ClearValue");
static int s_ClearBufferKernel;
static int s_ClearKernel;
static int s_JumpFloodingKernel;
static int s_FillUVKernel;
static int s_FinalPassKernel;
static int s_VoxelizeProbeVolumesKernel;
static int s_SubdivideKernel;
static ComputeShader _subdivideSceneCS;
static ComputeShader subdivideSceneCS
{
get
{
if (_subdivideSceneCS == null)
{
_subdivideSceneCS = AssetDatabase.LoadAssetAtPath<ComputeShader>("Packages/com.unity.render-pipelines.core/Editor/Lighting/ProbeVolume/ProbeVolumeSubdivide.compute");
s_ClearBufferKernel = subdivideSceneCS.FindKernel("ClearBuffer");
s_ClearKernel = subdivideSceneCS.FindKernel("Clear");
s_JumpFloodingKernel = subdivideSceneCS.FindKernel("JumpFlooding");
s_FillUVKernel = subdivideSceneCS.FindKernel("FillUVMap");
s_FinalPassKernel = subdivideSceneCS.FindKernel("FinalPass");
s_VoxelizeProbeVolumesKernel = subdivideSceneCS.FindKernel("VoxelizeProbeVolumeData");
s_SubdivideKernel = subdivideSceneCS.FindKernel("Subdivide");
}
return _subdivideSceneCS;
}
}
static Material _voxelizeMaterial;
static Material voxelizeMaterial
{
get
{
if (_voxelizeMaterial == null)
_voxelizeMaterial = new Material(Shader.Find("Hidden/ProbeVolume/VoxelizeScene"));
return _voxelizeMaterial;
}
}
static public ProbeReferenceVolume.Volume ToVolume(Bounds bounds)
{
ProbeReferenceVolume.Volume v = new ProbeReferenceVolume.Volume();
v.corner = bounds.center - bounds.size * 0.5f;
v.X = new Vector3(bounds.size.x, 0, 0);
v.Y = new Vector3(0, bounds.size.y, 0);
v.Z = new Vector3(0, 0, bounds.size.z);
return v;
}
public static GPUSubdivisionContext AllocateGPUResources(int probeVolumeCount, int maxSubdivisionLevel) => new GPUSubdivisionContext(probeVolumeCount, maxSubdivisionLevel);
static IEnumerable<(ProbeReferenceVolume.Volume volume, Vector3 parentPosition)> SubdivideVolumeIntoSubVolume(GPUSubdivisionContext ctx, ProbeReferenceVolume.Volume volume)
{
volume.CalculateCenterAndSize(out var center, out var size);
float maxBrickInSubCell = Mathf.Pow(3, k_MaxSubdivisionInSubCell);
float subdivisionCount = ctx.maxBrickCountPerAxis / (float)ctx.maxBrickCountPerAxisInSubCell;
var subVolumeSize = size / subdivisionCount;
for (int x = 0; x < (int)subdivisionCount; x++)
{
for (int y = 0; y < (int)subdivisionCount; y++)
for (int z = 0; z < (int)subdivisionCount; z++)
{
var subVolume = new ProbeReferenceVolume.Volume()
{
corner = volume.corner + new Vector3(x * subVolumeSize.x, y * subVolumeSize.y, z * subVolumeSize.z),
X = volume.X / subdivisionCount,
Y = volume.Y / subdivisionCount,
Z = volume.Z / subdivisionCount,
maxSubdivisionMultiplier = volume.maxSubdivisionMultiplier,
minSubdivisionMultiplier = volume.minSubdivisionMultiplier,
};
var parentCellPosition = new Vector3(x, y, z);
yield return (subVolume, parentCellPosition);
}
}
}
public static List<Brick> SubdivideCell(ProbeReferenceVolume.Volume cellVolume, ProbeSubdivisionContext subdivisionCtx, GPUSubdivisionContext ctx, List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers, List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes)
{
List<Brick> finalBricks = new List<Brick>();
HashSet<Brick> brickSet = new HashSet<Brick>();
cellVolume.CalculateCenterAndSize(out var center, out var _);
var cellAABB = cellVolume.CalculateAABB();
Profiler.BeginSample($"Subdivide Cell {center}");
{
// If the cell is too big so we split it into smaller cells and bake each one separately
if (ctx.maxBrickCountPerAxis > k_MaxDistanceFieldTextureSize)
{
foreach (var subVolume in SubdivideVolumeIntoSubVolume(ctx, cellVolume))
{
// redo the renderers and probe volume culling to avoid unnecessary work
// Calculate overlaping probe volumes to avoid unnecessary work
var overlappingProbeVolumes = new List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)>();
foreach (var probeVolume in probeVolumes)
{
if (ProbeVolumePositioning.OBBIntersect(probeVolume.volume, subVolume.volume))
overlappingProbeVolumes.Add(probeVolume);
}
// Calculate valid renderers to avoid unnecessary work (a renderer needs to overlap a probe volume and match the layer)
var overlappingRenderers = new List<(Renderer component, ProbeReferenceVolume.Volume volume)>();
foreach (var renderer in renderers)
{
foreach (var probeVolume in overlappingProbeVolumes)
{
if (ProbeVolumePositioning.OBBIntersect(renderer.volume, probeVolume.volume)
&& ProbeVolumePositioning.OBBIntersect(renderer.volume, subVolume.volume))
overlappingRenderers.Add(renderer);
}
}
// Calculate overlapping terrains to avoid unnecessary work
var overlappingTerrains = new List<(Terrain terrain, ProbeReferenceVolume.Volume volume)>();
foreach (var terrain in subdivisionCtx.terrains)
{
foreach (var probeVolume in overlappingProbeVolumes)
{
if (ProbeVolumePositioning.OBBIntersect(terrain.volume, probeVolume.volume)
&& ProbeVolumePositioning.OBBIntersect(terrain.volume, subVolume.volume))
overlappingTerrains.Add(terrain);
}
}
if (overlappingRenderers.Count == 0 && overlappingProbeVolumes.Count == 0 && overlappingTerrains.Count == 0)
continue;
int brickCount = brickSet.Count;
SubdivideSubCell(subVolume.volume, subdivisionCtx, ctx, overlappingRenderers, overlappingProbeVolumes, overlappingTerrains, brickSet);
// In case there is at least one brick in the sub-cell, we need to spawn the parent brick.
if (brickCount != brickSet.Count)
{
float minBrickSize = subdivisionCtx.profile.minBrickSize;
Vector3 cellID = (cellAABB.center - cellAABB.extents) / minBrickSize;
float parentSubdivLevel = 3.0f;
for (int i = k_MaxSubdivisionInSubCell; i < ctx.maxSubdivisionLevel; i++)
{
Vector3 subCellPos = (subVolume.parentPosition / parentSubdivLevel);
// Add the sub-cell offset:
int brickSize = (int)Mathf.Pow(3, i + 1);
Vector3Int subCellPosInt = new Vector3Int(Mathf.FloorToInt(subCellPos.x), Mathf.FloorToInt(subCellPos.y), Mathf.FloorToInt(subCellPos.z)) * brickSize;
Vector3Int parentSubCellPos = new Vector3Int(Mathf.RoundToInt(cellID.x), Mathf.RoundToInt(cellID.y), Mathf.RoundToInt(cellID.z)) + subCellPosInt;
if (IsParentBrickInProbeVolume(parentSubCellPos, minBrickSize, brickSize))
{
// Find the corner in bricks of the parent volume:
brickSet.Add(new Brick(parentSubCellPos, i + 1));
parentSubdivLevel *= 3.0f;
}
}
}
}
}
else
{
SubdivideSubCell(cellVolume, subdivisionCtx, ctx, renderers, probeVolumes, subdivisionCtx.terrains, brickSet);
}
bool IsParentBrickInProbeVolume(Vector3Int parentSubCellPos, float minBrickSize, int brickSize)
{
Vector3 center = (Vector3)parentSubCellPos * minBrickSize + Vector3.one * brickSize * minBrickSize / 2.0f;
Bounds parentAABB = new Bounds(center, Vector3.one * brickSize * minBrickSize);
bool generateParentBrick = false;
foreach (var probeVolume in probeVolumes)
{
var pvAABB = probeVolume.volume.CalculateAABB();
if (pvAABB.Contains(parentAABB.min) && pvAABB.Contains(parentAABB.max))
generateParentBrick = true;
}
return generateParentBrick;
}
finalBricks = brickSet.ToList();
// TODO: this is really slow :/
Profiler.BeginSample($"Sort {finalBricks.Count} bricks");
// sort from larger to smaller bricks
finalBricks.Sort((Brick lhs, Brick rhs) =>
{
if (lhs.subdivisionLevel != rhs.subdivisionLevel)
return lhs.subdivisionLevel > rhs.subdivisionLevel ? -1 : 1;
if (lhs.position.z != rhs.position.z)
return lhs.position.z < rhs.position.z ? -1 : 1;
if (lhs.position.y != rhs.position.y)
return lhs.position.y < rhs.position.y ? -1 : 1;
if (lhs.position.x != rhs.position.x)
return lhs.position.x < rhs.position.x ? -1 : 1;
return 0;
});
Profiler.EndSample();
}
Profiler.EndSample();
return finalBricks;
}
static void SubdivideSubCell(ProbeReferenceVolume.Volume cellVolume, ProbeSubdivisionContext subdivisionCtx,
GPUSubdivisionContext ctx, List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers,
List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes,
List<(Terrain terrain, ProbeReferenceVolume.Volume volume)> terrains, HashSet<Brick> brickSet)
{
var cellAABB = cellVolume.CalculateAABB();
float minBrickSize = subdivisionCtx.profile.minBrickSize;
cellVolume.CalculateCenterAndSize(out var center, out var _);
var cmd = CommandBufferPool.Get($"Subdivide (Sub)Cell {center}");
if (RastersizeGeometry(cmd, cellVolume, ctx, renderers, terrains))
{
// Only generate the distance field if there was an object rasterized
GenerateDistanceField(cmd, ctx.sceneSDF, ctx.sceneSDF2);
}
else
{
// When the is no geometry, instead of computing the distance field, we clear it with a big value.
using (new ProfilingScope(cmd, new ProfilingSampler("Clear")))
{
cmd.SetComputeTextureParam(subdivideSceneCS, s_ClearKernel, _Output, ctx.sceneSDF);
cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth));
cmd.SetComputeFloatParam(subdivideSceneCS, _ClearValue, 1000);
DispatchCompute(cmd, s_ClearKernel, ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth);
}
}
// Now that the distance field is generated, we can store the probe subdivision data inside sceneSDF2
var probeSubdivisionData = ctx.sceneSDF2;
VoxelizeProbeVolumeData(cmd, cellAABB, probeVolumes, ctx);
// Find the maximum subdivision level we can have in this cell (avoid extra work if not needed)
int startSubdivisionLevel = Mathf.Max(0, ctx.maxSubdivisionLevelInSubCell - GetMaxSubdivision(ctx, probeVolumes.Max(p => p.component.GetMaxSubdivMultiplier())));
for (int subdivisionLevel = startSubdivisionLevel; subdivisionLevel <= ctx.maxSubdivisionLevelInSubCell; subdivisionLevel++)
{
// Add the bricks from the probe volume min subdivision level:
int brickCountPerAxis = (int)Mathf.Pow(3, ctx.maxSubdivisionLevelInSubCell - subdivisionLevel);
var bricksBuffer = ctx.bricksBuffers[subdivisionLevel];
var brickCountReadbackBuffer = ctx.readbackCountBuffers[subdivisionLevel];
using (new ProfilingScope(cmd, new ProfilingSampler("Clear Bricks Buffer")))
{
cmd.SetComputeBufferParam(subdivideSceneCS, s_ClearBufferKernel, _BricksToClear, bricksBuffer);
DispatchCompute(cmd, s_ClearBufferKernel, brickCountPerAxis * brickCountPerAxis * brickCountPerAxis, 1);
cmd.SetBufferCounterValue(bricksBuffer, 0);
}
// Generate the list of bricks on the GPU
SubdivideFromDistanceField(cmd, cellAABB, ctx, probeSubdivisionData, bricksBuffer, brickCountPerAxis, subdivisionLevel, minBrickSize);
cmd.CopyCounterValue(bricksBuffer, brickCountReadbackBuffer, 0);
// Capture locally the subdivision level to use it inside the lambda
int localSubdivLevel = subdivisionLevel;
cmd.RequestAsyncReadback(brickCountReadbackBuffer, sizeof(int), 0, (data) => {
int readbackBrickCount = data.GetData<int>()[0];
if (readbackBrickCount > 0)
{
bricksBuffer.GetData(ctx.brickPositions, 0, 0, readbackBrickCount);
for (int i = 0; i < readbackBrickCount; i++)
{
var pos = ctx.brickPositions[i];
var brick = new Brick(new Vector3Int(Mathf.RoundToInt(pos.x), Mathf.RoundToInt(pos.y), Mathf.RoundToInt(pos.z)), localSubdivLevel);
brickSet.Add(brick);
}
}
});
}
cmd.WaitAllAsyncReadbackRequests();
Graphics.ExecuteCommandBuffer(cmd);
cmd.Clear();
CommandBufferPool.Release(cmd);
}
static bool RastersizeGeometry(CommandBuffer cmd, ProbeReferenceVolume.Volume cellVolume, GPUSubdivisionContext ctx,
List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers,
List<(Terrain terrain, ProbeReferenceVolume.Volume volume)> terrains)
{
var topMatrix = GetCameraMatrixForAngle(Quaternion.Euler(90, 0, 0));
var rightMatrix = GetCameraMatrixForAngle(Quaternion.Euler(0, 90, 0));
var forwardMatrix = GetCameraMatrixForAngle(Quaternion.Euler(0, 0, 90));
var props = new MaterialPropertyBlock();
bool hasGeometry = renderers.Count > 0 || terrains.Count > 0;
var cellAABB = cellVolume.CalculateAABB();
// Setup voxelize material properties
voxelizeMaterial.SetVector(_OutputSize, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth));
voxelizeMaterial.SetVector(_VolumeWorldOffset, cellAABB.center - cellAABB.extents);
voxelizeMaterial.SetVector(_VolumeSize, cellAABB.size);
if (hasGeometry)
{
using (new ProfilingScope(cmd, new ProfilingSampler("Clear")))
{
cmd.SetComputeTextureParam(subdivideSceneCS, s_ClearKernel, _Output, ctx.sceneSDF);
cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth));
cmd.SetComputeFloatParam(subdivideSceneCS, _ClearValue, 0);
DispatchCompute(cmd, s_ClearKernel, ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth);
}
}
cmd.SetRandomWriteTarget(k_RandomWriteBindingIndex, ctx.sceneSDF);
// We need to bind at least something for rendering
cmd.SetRenderTarget(ctx.dummyRenderTarget);
cmd.SetViewport(new Rect(0, 0, ctx.dummyRenderTarget.width, ctx.dummyRenderTarget.height));
if (renderers.Count > 0)
{
using (new ProfilingScope(cmd, new ProfilingSampler("Rasterize Meshes 3D")))
{
foreach (var kp in renderers)
{
// Only mesh renderers are supported for this voxelization pass.
var renderer = kp.component as MeshRenderer;
if (renderer == null)
continue;
if (cellAABB.Intersects(renderer.bounds))
{
if (renderer.TryGetComponent<MeshFilter>(out var meshFilter) && meshFilter.sharedMesh != null)
{
for (int submesh = 0; submesh < meshFilter.sharedMesh.subMeshCount; submesh++)
{
props.SetInt(_AxisSwizzle, 0);
cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props);
props.SetInt(_AxisSwizzle, 1);
cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props);
props.SetInt(_AxisSwizzle, 2);
cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props);
}
}
}
}
}
}
if (terrains.Count > 0)
{
using (new ProfilingScope(cmd, new ProfilingSampler("Rasterize Terrains")))
{
foreach (var kp in terrains)
{
var terrainData = kp.terrain.terrainData;
// Terrains can't be rotated or scaled
var transform = Matrix4x4.Translate(kp.terrain.GetPosition());
props.SetTexture("_TerrainHeightmapTexture", terrainData.heightmapTexture);
props.SetTexture("_TerrainHolesTexture", terrainData.holesTexture);
props.SetVector("_TerrainSize", terrainData.size);
props.SetFloat("_TerrainHeightmapResolution", terrainData.heightmapResolution);
int terrainTileCount = terrainData.heightmapResolution * terrainData.heightmapResolution;
props.SetInt(_AxisSwizzle, 0);
cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props);
props.SetInt(_AxisSwizzle, 1);
cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props);
props.SetInt(_AxisSwizzle, 2);
cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props);
}
}
}
Matrix4x4 GetCameraMatrixForAngle(Quaternion rotation)
{
cellVolume.CalculateCenterAndSize(out var center, out var size);
Vector3 cameraSize = new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth) / 2.0f;
cameraSize = size / 2;
var worldToCamera = Matrix4x4.TRS(Vector3.zero, rotation, Vector3.one);
var projection = Matrix4x4.Ortho(-cameraSize.x, cameraSize.x, -cameraSize.y, cameraSize.y, 0, cameraSize.z * 2);
return Matrix4x4.Rotate(Quaternion.Euler((Time.realtimeSinceStartup * 10f) % 360, 0, 0));
}
cmd.ClearRandomWriteTargets();
return hasGeometry;
}
static void DispatchCompute(CommandBuffer cmd, int kernel, int width, int height, int depth = 1)
{
// If any issue occur on mac / intel GPU devices regarding the probe subdivision, it's likely to be
// the GetKernelThreadGroupSizes returning wrong values.
subdivideSceneCS.GetKernelThreadGroupSizes(kernel, out uint x, out uint y, out uint z);
cmd.DispatchCompute(
subdivideSceneCS,
kernel,
Mathf.Max(1, Mathf.CeilToInt(width / (float)x)),
Mathf.Max(1, Mathf.CeilToInt(height / (float)y)),
Mathf.Max(1, Mathf.CeilToInt(depth / (float)z)));
}
static void CopyTexture(CommandBuffer cmd, RenderTexture source, RenderTexture destination)
{
using (new ProfilingScope(cmd, new ProfilingSampler("Copy")))
{
for (int i = 0; i < source.volumeDepth; i++)
cmd.CopyTexture(source, i, 0, destination, i, 0);
}
}
static void GenerateDistanceField(CommandBuffer cmd, RenderTexture sceneSDF1, RenderTexture sceneSDF2)
{
using (new ProfilingScope(cmd, new ProfilingSampler("GenerateDistanceField")))
{
// Generate distance field with JFA
cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector4(sceneSDF1.width, 1.0f / sceneSDF1.width));
// We need those copies because there is a compute barrier bug only happening on low-resolution textures
CopyTexture(cmd, sceneSDF1, sceneSDF2);
// Jump flooding implementation based on https://www.comp.nus.edu.sg/~tants/jfa.html
using (new ProfilingScope(cmd, new ProfilingSampler("JumpFlooding")))
{
cmd.SetComputeTextureParam(subdivideSceneCS, s_FillUVKernel, _Input, sceneSDF2);
cmd.SetComputeTextureParam(subdivideSceneCS, s_FillUVKernel, _Output, sceneSDF1);
DispatchCompute(cmd, s_FillUVKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth);
int maxLevels = (int)Mathf.Log(sceneSDF1.width, 2);
for (int i = 0; i <= maxLevels; i++)
{
float offset = 1 << (maxLevels - i);
cmd.SetComputeFloatParam(subdivideSceneCS, _Offset, offset);
cmd.SetComputeTextureParam(subdivideSceneCS, s_JumpFloodingKernel, _Input, sceneSDF1);
cmd.SetComputeTextureParam(subdivideSceneCS, s_JumpFloodingKernel, _Output, sceneSDF2);
DispatchCompute(cmd, s_JumpFloodingKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth);
CopyTexture(cmd, sceneSDF2, sceneSDF1);
}
}
CopyTexture(cmd, sceneSDF2, sceneSDF1);
cmd.SetComputeTextureParam(subdivideSceneCS, s_FinalPassKernel, _Input, sceneSDF2);
cmd.SetComputeTextureParam(subdivideSceneCS, s_FinalPassKernel, _Output, sceneSDF1);
DispatchCompute(cmd, s_FinalPassKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth);
}
}
static int GetMaxSubdivision(GPUSubdivisionContext ctx, float multiplier)
=> Mathf.CeilToInt(ctx.maxSubdivisionLevelInSubCell * multiplier);
static void VoxelizeProbeVolumeData(CommandBuffer cmd, Bounds cellAABB,
List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes,
GPUSubdivisionContext ctx)
{
using (new ProfilingScope(cmd, new ProfilingSampler("Voxelize Probe Volume Data")))
{
List<GPUProbeVolumeOBB> gpuProbeVolumes = new List<GPUProbeVolumeOBB>();
// Prepare list of GPU probe volumes
foreach (var kp in probeVolumes)
{
int minSubdiv = GetMaxSubdivision(ctx, kp.component.GetMinSubdivMultiplier());
int maxSubdiv = GetMaxSubdivision(ctx, kp.component.GetMaxSubdivMultiplier());
// Constrain the probe volume AABB inside the cell
var pvAABB = kp.volume.CalculateAABB();
pvAABB.min = Vector3.Max(pvAABB.min, cellAABB.min);
pvAABB.max = Vector3.Min(pvAABB.max, cellAABB.max);
// Compute the max size of a brick that can fit in the smallest dimension of a probe volume
float minSizedDim = Mathf.Min(pvAABB.size.x, Mathf.Min(pvAABB.size.y, pvAABB.size.z));
float minSideInBricks = Mathf.CeilToInt(minSizedDim / ProbeReferenceVolume.instance.MinBrickSize());
int absoluteMaxSubdiv = ProbeReferenceVolume.instance.GetMaxSubdivision() - 1;
minSideInBricks = Mathf.Max(minSideInBricks, Mathf.Pow(3, absoluteMaxSubdiv - maxSubdiv));
int subdivLevel = Mathf.FloorToInt(Mathf.Log(minSideInBricks, 3));
gpuProbeVolumes.Add(new GPUProbeVolumeOBB
{
corner = kp.volume.corner,
X = kp.volume.X,
Y = kp.volume.Y,
Z = kp.volume.Z,
minControllerSubdivLevel = minSubdiv,
maxControllerSubdivLevel = maxSubdiv,
maxSubdivLevelInsideVolume = subdivLevel,
geometryDistanceOffset = kp.component.geometryDistanceOffset,
});
}
cmd.SetBufferData(ctx.probeVolumesBuffer, gpuProbeVolumes);
cmd.SetComputeBufferParam(subdivideSceneCS, s_VoxelizeProbeVolumesKernel, _ProbeVolumes, ctx.probeVolumesBuffer);
cmd.SetComputeFloatParam(subdivideSceneCS, _ProbeVolumeCount, probeVolumes.Count);
cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeWorldOffset, cellAABB.center - cellAABB.extents);
cmd.SetComputeVectorParam(subdivideSceneCS, _MaxBrickSize, Vector3.one * ctx.maxBrickCountPerAxisInSubCell);
int subdivisionLevelCount = (int)Mathf.Log(ctx.maxBrickCountPerAxisInSubCell, 3);
for (int i = 0; i <= subdivisionLevelCount; i++)
{
int brickCountPerAxis = (int)Mathf.Pow(3, ctx.maxSubdivisionLevelInSubCell - i);
cmd.SetComputeFloatParam(subdivideSceneCS, _BrickSize, cellAABB.size.x / brickCountPerAxis);
cmd.SetComputeTextureParam(subdivideSceneCS, s_VoxelizeProbeVolumesKernel, _Output, ctx.sceneSDF2, i);
DispatchCompute(cmd, s_VoxelizeProbeVolumesKernel, brickCountPerAxis, brickCountPerAxis, brickCountPerAxis);
}
}
}
static void SubdivideFromDistanceField(
CommandBuffer cmd, Bounds volume, GPUSubdivisionContext ctx, RenderTexture probeVolumeData,
ComputeBuffer buffer, int brickCount, int subdivisionLevel, float minBrickSize)
{
using (new ProfilingScope(cmd, new ProfilingSampler($"Subdivide Bricks at level {Mathf.Log(brickCount, 3)}")))
{
// We convert the world space volume position (of a corner) in bricks.
// This is necessary to have correct brick position (the position calculated in the compute shader needs to be in number of bricks from the reference volume (origin)).
Vector3 volumeBrickPosition = (volume.center - volume.extents) / minBrickSize;
cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeOffsetInBricks, volumeBrickPosition);
cmd.SetComputeBufferParam(subdivideSceneCS, s_SubdivideKernel, _Bricks, buffer);
cmd.SetComputeVectorParam(subdivideSceneCS, _MaxBrickSize, Vector3.one * brickCount);
cmd.SetComputeFloatParam(subdivideSceneCS, _SubdivisionLevel, subdivisionLevel);
cmd.SetComputeFloatParam(subdivideSceneCS, _MaxSubdivisionLevel, ctx.maxSubdivisionLevelInSubCell);
cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeSizeInBricks, Vector3.one * ctx.maxBrickCountPerAxisInSubCell);
cmd.SetComputeVectorParam(subdivideSceneCS, _SDFSize, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth));
cmd.SetComputeTextureParam(subdivideSceneCS, s_SubdivideKernel, _Input, ctx.sceneSDF);
cmd.SetComputeTextureParam(subdivideSceneCS, s_SubdivideKernel, _ProbeVolumeData, probeVolumeData);
DispatchCompute(cmd, s_SubdivideKernel, brickCount, brickCount, brickCount);
}
}
}
}
#endif