#if UNITY_EDITOR using System.Collections.Generic; using UnityEditor; using UnityEngine.SceneManagement; using UnityEngine; using UnityEngine.Rendering; using UnityEngine.Experimental.Rendering; using System.Linq; using UnityEngine.Profiling; using System; namespace UnityEngine.Experimental.Rendering { using Brick = ProbeBrickIndex.Brick; class ProbePlacement { const int k_MaxDistanceFieldTextureSize = 128; const int k_MaxSubdivisionInSubCell = 4; // The UAV binding index 4 isn't in use when we bake the probes and doesn't crash unity. const int k_RandomWriteBindingIndex = 4; [GenerateHLSL(needAccessors = false)] struct GPUProbeVolumeOBB { public Vector3 corner; public Vector3 X; public Vector3 Y; public Vector3 Z; public int minControllerSubdivLevel; public int maxControllerSubdivLevel; public int maxSubdivLevelInsideVolume; public float geometryDistanceOffset; } public class GPUSubdivisionContext : IDisposable { public int maxSubdivisionLevel; public int maxBrickCountPerAxis; public int maxSubdivisionLevelInSubCell; public int maxBrickCountPerAxisInSubCell; public RenderTexture sceneSDF; public RenderTexture sceneSDF2; public RenderTexture dummyRenderTarget; public ComputeBuffer probeVolumesBuffer; public ComputeBuffer[] bricksBuffers; public ComputeBuffer[] readbackCountBuffers; public Vector3[] brickPositions; public GPUSubdivisionContext(int probeVolumeCount, int maxSubdivisionLevelFromAsset) { // Find the maximum subdivision level we can have in this cell (avoid extra work if not needed) this.maxSubdivisionLevel = maxSubdivisionLevelFromAsset - 1; // remove 1 because the last subdiv level is the cell size maxBrickCountPerAxis = (int)Mathf.Pow(3, maxSubdivisionLevel); // cells are always cube // jump flooding algorithm works best with POT textures int sceneSDFSize = Mathf.NextPowerOfTwo(maxBrickCountPerAxis); // Limit the max resolution of the texture to avoid out of memory, for bigger cells, we split them into sub-cells for distance field computation. sceneSDFSize = Mathf.Clamp(sceneSDFSize, 64, k_MaxDistanceFieldTextureSize); RenderTextureDescriptor distanceFieldTextureDescriptor = new RenderTextureDescriptor { height = sceneSDFSize, width = sceneSDFSize, volumeDepth = sceneSDFSize, enableRandomWrite = true, dimension = TextureDimension.Tex3D, graphicsFormat = Experimental.Rendering.GraphicsFormat.R16G16B16A16_SFloat, // we need 16 bit precision for the distance field msaaSamples = 1, }; sceneSDF = RenderTexture.GetTemporary(distanceFieldTextureDescriptor); sceneSDF.name = "Scene SDF"; sceneSDF.Create(); sceneSDF2 = RenderTexture.GetTemporary(distanceFieldTextureDescriptor); // We need mipmaps for the second map to store the probe volume min and max subdivision sceneSDF2.useMipMap = true; sceneSDF2.autoGenerateMips = false; sceneSDF2.name = "Scene SDF Double Buffer"; sceneSDF2.Create(); // Dummy render texture to bind during the voxelization of meshes dummyRenderTarget = RenderTexture.GetTemporary(sceneSDFSize, sceneSDFSize, 0, GraphicsFormat.R8_SNorm); int stride = System.Runtime.InteropServices.Marshal.SizeOf(typeof(GPUProbeVolumeOBB)); probeVolumesBuffer = new ComputeBuffer(probeVolumeCount, stride, ComputeBufferType.Structured); // Allocate one readback and bricks buffer per subdivision level maxSubdivisionLevelInSubCell = Mathf.Min(maxSubdivisionLevel, k_MaxSubdivisionInSubCell); maxBrickCountPerAxisInSubCell = (int)Mathf.Pow(3, maxSubdivisionLevelInSubCell); bricksBuffers = new ComputeBuffer[maxSubdivisionLevelInSubCell + 1]; readbackCountBuffers = new ComputeBuffer[maxSubdivisionLevelInSubCell + 1]; for (int i = 0; i <= maxSubdivisionLevelInSubCell; i++) { int brickCountPerAxis = (int)Mathf.Pow(3, maxSubdivisionLevelInSubCell - i); bricksBuffers[i] = new ComputeBuffer(brickCountPerAxis * brickCountPerAxis * brickCountPerAxis, sizeof(float) * 3, ComputeBufferType.Append); readbackCountBuffers[i] = new ComputeBuffer(1, sizeof(int), ComputeBufferType.Raw); } brickPositions = new Vector3[maxBrickCountPerAxisInSubCell * maxBrickCountPerAxisInSubCell * maxBrickCountPerAxisInSubCell]; } public void Dispose() { RenderTexture.ReleaseTemporary(sceneSDF); RenderTexture.ReleaseTemporary(sceneSDF2); RenderTexture.ReleaseTemporary(dummyRenderTarget); probeVolumesBuffer.Release(); for (int i = 0; i <= maxSubdivisionLevelInSubCell; i++) { bricksBuffers[i].Release(); readbackCountBuffers[i].Release(); } } } static readonly int _BricksToClear = Shader.PropertyToID("_BricksToClear"); static readonly int _Output = Shader.PropertyToID("_Output"); static readonly int _OutputSize = Shader.PropertyToID("_OutputSize"); static readonly int _VolumeWorldOffset = Shader.PropertyToID("_VolumeWorldOffset"); static readonly int _VolumeSize = Shader.PropertyToID("_VolumeSize"); static readonly int _AxisSwizzle = Shader.PropertyToID("_AxisSwizzle"); static readonly int _Size = Shader.PropertyToID("_Size"); static readonly int _Input = Shader.PropertyToID("_Input"); static readonly int _Offset = Shader.PropertyToID("_Offset"); static readonly int _ProbeVolumes = Shader.PropertyToID("_ProbeVolumes"); static readonly int _ProbeVolumeCount = Shader.PropertyToID("_ProbeVolumeCount"); static readonly int _MaxBrickSize = Shader.PropertyToID("_MaxBrickSize"); static readonly int _VolumeOffsetInBricks = Shader.PropertyToID("_VolumeOffsetInBricks"); static readonly int _Bricks = Shader.PropertyToID("_Bricks"); static readonly int _SubdivisionLevel = Shader.PropertyToID("_SubdivisionLevel"); static readonly int _MaxSubdivisionLevel = Shader.PropertyToID("_MaxSubdivisionLevel"); static readonly int _VolumeSizeInBricks = Shader.PropertyToID("_VolumeSizeInBricks"); static readonly int _SDFSize = Shader.PropertyToID("_SDFSize"); static readonly int _ProbeVolumeData = Shader.PropertyToID("_ProbeVolumeData"); static readonly int _BrickSize = Shader.PropertyToID("_BrickSize"); static readonly int _ClearValue = Shader.PropertyToID("_ClearValue"); static int s_ClearBufferKernel; static int s_ClearKernel; static int s_JumpFloodingKernel; static int s_FillUVKernel; static int s_FinalPassKernel; static int s_VoxelizeProbeVolumesKernel; static int s_SubdivideKernel; static ComputeShader _subdivideSceneCS; static ComputeShader subdivideSceneCS { get { if (_subdivideSceneCS == null) { _subdivideSceneCS = AssetDatabase.LoadAssetAtPath("Packages/com.unity.render-pipelines.core/Editor/Lighting/ProbeVolume/ProbeVolumeSubdivide.compute"); s_ClearBufferKernel = subdivideSceneCS.FindKernel("ClearBuffer"); s_ClearKernel = subdivideSceneCS.FindKernel("Clear"); s_JumpFloodingKernel = subdivideSceneCS.FindKernel("JumpFlooding"); s_FillUVKernel = subdivideSceneCS.FindKernel("FillUVMap"); s_FinalPassKernel = subdivideSceneCS.FindKernel("FinalPass"); s_VoxelizeProbeVolumesKernel = subdivideSceneCS.FindKernel("VoxelizeProbeVolumeData"); s_SubdivideKernel = subdivideSceneCS.FindKernel("Subdivide"); } return _subdivideSceneCS; } } static Material _voxelizeMaterial; static Material voxelizeMaterial { get { if (_voxelizeMaterial == null) _voxelizeMaterial = new Material(Shader.Find("Hidden/ProbeVolume/VoxelizeScene")); return _voxelizeMaterial; } } static public ProbeReferenceVolume.Volume ToVolume(Bounds bounds) { ProbeReferenceVolume.Volume v = new ProbeReferenceVolume.Volume(); v.corner = bounds.center - bounds.size * 0.5f; v.X = new Vector3(bounds.size.x, 0, 0); v.Y = new Vector3(0, bounds.size.y, 0); v.Z = new Vector3(0, 0, bounds.size.z); return v; } public static GPUSubdivisionContext AllocateGPUResources(int probeVolumeCount, int maxSubdivisionLevel) => new GPUSubdivisionContext(probeVolumeCount, maxSubdivisionLevel); static IEnumerable<(ProbeReferenceVolume.Volume volume, Vector3 parentPosition)> SubdivideVolumeIntoSubVolume(GPUSubdivisionContext ctx, ProbeReferenceVolume.Volume volume) { volume.CalculateCenterAndSize(out var center, out var size); float maxBrickInSubCell = Mathf.Pow(3, k_MaxSubdivisionInSubCell); float subdivisionCount = ctx.maxBrickCountPerAxis / (float)ctx.maxBrickCountPerAxisInSubCell; var subVolumeSize = size / subdivisionCount; for (int x = 0; x < (int)subdivisionCount; x++) { for (int y = 0; y < (int)subdivisionCount; y++) for (int z = 0; z < (int)subdivisionCount; z++) { var subVolume = new ProbeReferenceVolume.Volume() { corner = volume.corner + new Vector3(x * subVolumeSize.x, y * subVolumeSize.y, z * subVolumeSize.z), X = volume.X / subdivisionCount, Y = volume.Y / subdivisionCount, Z = volume.Z / subdivisionCount, maxSubdivisionMultiplier = volume.maxSubdivisionMultiplier, minSubdivisionMultiplier = volume.minSubdivisionMultiplier, }; var parentCellPosition = new Vector3(x, y, z); yield return (subVolume, parentCellPosition); } } } public static List SubdivideCell(ProbeReferenceVolume.Volume cellVolume, ProbeSubdivisionContext subdivisionCtx, GPUSubdivisionContext ctx, List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers, List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes) { List finalBricks = new List(); HashSet brickSet = new HashSet(); cellVolume.CalculateCenterAndSize(out var center, out var _); var cellAABB = cellVolume.CalculateAABB(); Profiler.BeginSample($"Subdivide Cell {center}"); { // If the cell is too big so we split it into smaller cells and bake each one separately if (ctx.maxBrickCountPerAxis > k_MaxDistanceFieldTextureSize) { foreach (var subVolume in SubdivideVolumeIntoSubVolume(ctx, cellVolume)) { // redo the renderers and probe volume culling to avoid unnecessary work // Calculate overlaping probe volumes to avoid unnecessary work var overlappingProbeVolumes = new List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)>(); foreach (var probeVolume in probeVolumes) { if (ProbeVolumePositioning.OBBIntersect(probeVolume.volume, subVolume.volume)) overlappingProbeVolumes.Add(probeVolume); } // Calculate valid renderers to avoid unnecessary work (a renderer needs to overlap a probe volume and match the layer) var overlappingRenderers = new List<(Renderer component, ProbeReferenceVolume.Volume volume)>(); foreach (var renderer in renderers) { foreach (var probeVolume in overlappingProbeVolumes) { if (ProbeVolumePositioning.OBBIntersect(renderer.volume, probeVolume.volume) && ProbeVolumePositioning.OBBIntersect(renderer.volume, subVolume.volume)) overlappingRenderers.Add(renderer); } } // Calculate overlapping terrains to avoid unnecessary work var overlappingTerrains = new List<(Terrain terrain, ProbeReferenceVolume.Volume volume)>(); foreach (var terrain in subdivisionCtx.terrains) { foreach (var probeVolume in overlappingProbeVolumes) { if (ProbeVolumePositioning.OBBIntersect(terrain.volume, probeVolume.volume) && ProbeVolumePositioning.OBBIntersect(terrain.volume, subVolume.volume)) overlappingTerrains.Add(terrain); } } if (overlappingRenderers.Count == 0 && overlappingProbeVolumes.Count == 0 && overlappingTerrains.Count == 0) continue; int brickCount = brickSet.Count; SubdivideSubCell(subVolume.volume, subdivisionCtx, ctx, overlappingRenderers, overlappingProbeVolumes, overlappingTerrains, brickSet); // In case there is at least one brick in the sub-cell, we need to spawn the parent brick. if (brickCount != brickSet.Count) { float minBrickSize = subdivisionCtx.profile.minBrickSize; Vector3 cellID = (cellAABB.center - cellAABB.extents) / minBrickSize; float parentSubdivLevel = 3.0f; for (int i = k_MaxSubdivisionInSubCell; i < ctx.maxSubdivisionLevel; i++) { Vector3 subCellPos = (subVolume.parentPosition / parentSubdivLevel); // Add the sub-cell offset: int brickSize = (int)Mathf.Pow(3, i + 1); Vector3Int subCellPosInt = new Vector3Int(Mathf.FloorToInt(subCellPos.x), Mathf.FloorToInt(subCellPos.y), Mathf.FloorToInt(subCellPos.z)) * brickSize; Vector3Int parentSubCellPos = new Vector3Int(Mathf.RoundToInt(cellID.x), Mathf.RoundToInt(cellID.y), Mathf.RoundToInt(cellID.z)) + subCellPosInt; if (IsParentBrickInProbeVolume(parentSubCellPos, minBrickSize, brickSize)) { // Find the corner in bricks of the parent volume: brickSet.Add(new Brick(parentSubCellPos, i + 1)); parentSubdivLevel *= 3.0f; } } } } } else { SubdivideSubCell(cellVolume, subdivisionCtx, ctx, renderers, probeVolumes, subdivisionCtx.terrains, brickSet); } bool IsParentBrickInProbeVolume(Vector3Int parentSubCellPos, float minBrickSize, int brickSize) { Vector3 center = (Vector3)parentSubCellPos * minBrickSize + Vector3.one * brickSize * minBrickSize / 2.0f; Bounds parentAABB = new Bounds(center, Vector3.one * brickSize * minBrickSize); bool generateParentBrick = false; foreach (var probeVolume in probeVolumes) { var pvAABB = probeVolume.volume.CalculateAABB(); if (pvAABB.Contains(parentAABB.min) && pvAABB.Contains(parentAABB.max)) generateParentBrick = true; } return generateParentBrick; } finalBricks = brickSet.ToList(); // TODO: this is really slow :/ Profiler.BeginSample($"Sort {finalBricks.Count} bricks"); // sort from larger to smaller bricks finalBricks.Sort((Brick lhs, Brick rhs) => { if (lhs.subdivisionLevel != rhs.subdivisionLevel) return lhs.subdivisionLevel > rhs.subdivisionLevel ? -1 : 1; if (lhs.position.z != rhs.position.z) return lhs.position.z < rhs.position.z ? -1 : 1; if (lhs.position.y != rhs.position.y) return lhs.position.y < rhs.position.y ? -1 : 1; if (lhs.position.x != rhs.position.x) return lhs.position.x < rhs.position.x ? -1 : 1; return 0; }); Profiler.EndSample(); } Profiler.EndSample(); return finalBricks; } static void SubdivideSubCell(ProbeReferenceVolume.Volume cellVolume, ProbeSubdivisionContext subdivisionCtx, GPUSubdivisionContext ctx, List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers, List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes, List<(Terrain terrain, ProbeReferenceVolume.Volume volume)> terrains, HashSet brickSet) { var cellAABB = cellVolume.CalculateAABB(); float minBrickSize = subdivisionCtx.profile.minBrickSize; cellVolume.CalculateCenterAndSize(out var center, out var _); var cmd = CommandBufferPool.Get($"Subdivide (Sub)Cell {center}"); if (RastersizeGeometry(cmd, cellVolume, ctx, renderers, terrains)) { // Only generate the distance field if there was an object rasterized GenerateDistanceField(cmd, ctx.sceneSDF, ctx.sceneSDF2); } else { // When the is no geometry, instead of computing the distance field, we clear it with a big value. using (new ProfilingScope(cmd, new ProfilingSampler("Clear"))) { cmd.SetComputeTextureParam(subdivideSceneCS, s_ClearKernel, _Output, ctx.sceneSDF); cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth)); cmd.SetComputeFloatParam(subdivideSceneCS, _ClearValue, 1000); DispatchCompute(cmd, s_ClearKernel, ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth); } } // Now that the distance field is generated, we can store the probe subdivision data inside sceneSDF2 var probeSubdivisionData = ctx.sceneSDF2; VoxelizeProbeVolumeData(cmd, cellAABB, probeVolumes, ctx); // Find the maximum subdivision level we can have in this cell (avoid extra work if not needed) int startSubdivisionLevel = Mathf.Max(0, ctx.maxSubdivisionLevelInSubCell - GetMaxSubdivision(ctx, probeVolumes.Max(p => p.component.GetMaxSubdivMultiplier()))); for (int subdivisionLevel = startSubdivisionLevel; subdivisionLevel <= ctx.maxSubdivisionLevelInSubCell; subdivisionLevel++) { // Add the bricks from the probe volume min subdivision level: int brickCountPerAxis = (int)Mathf.Pow(3, ctx.maxSubdivisionLevelInSubCell - subdivisionLevel); var bricksBuffer = ctx.bricksBuffers[subdivisionLevel]; var brickCountReadbackBuffer = ctx.readbackCountBuffers[subdivisionLevel]; using (new ProfilingScope(cmd, new ProfilingSampler("Clear Bricks Buffer"))) { cmd.SetComputeBufferParam(subdivideSceneCS, s_ClearBufferKernel, _BricksToClear, bricksBuffer); DispatchCompute(cmd, s_ClearBufferKernel, brickCountPerAxis * brickCountPerAxis * brickCountPerAxis, 1); cmd.SetBufferCounterValue(bricksBuffer, 0); } // Generate the list of bricks on the GPU SubdivideFromDistanceField(cmd, cellAABB, ctx, probeSubdivisionData, bricksBuffer, brickCountPerAxis, subdivisionLevel, minBrickSize); cmd.CopyCounterValue(bricksBuffer, brickCountReadbackBuffer, 0); // Capture locally the subdivision level to use it inside the lambda int localSubdivLevel = subdivisionLevel; cmd.RequestAsyncReadback(brickCountReadbackBuffer, sizeof(int), 0, (data) => { int readbackBrickCount = data.GetData()[0]; if (readbackBrickCount > 0) { bricksBuffer.GetData(ctx.brickPositions, 0, 0, readbackBrickCount); for (int i = 0; i < readbackBrickCount; i++) { var pos = ctx.brickPositions[i]; var brick = new Brick(new Vector3Int(Mathf.RoundToInt(pos.x), Mathf.RoundToInt(pos.y), Mathf.RoundToInt(pos.z)), localSubdivLevel); brickSet.Add(brick); } } }); } cmd.WaitAllAsyncReadbackRequests(); Graphics.ExecuteCommandBuffer(cmd); cmd.Clear(); CommandBufferPool.Release(cmd); } static bool RastersizeGeometry(CommandBuffer cmd, ProbeReferenceVolume.Volume cellVolume, GPUSubdivisionContext ctx, List<(Renderer component, ProbeReferenceVolume.Volume volume)> renderers, List<(Terrain terrain, ProbeReferenceVolume.Volume volume)> terrains) { var topMatrix = GetCameraMatrixForAngle(Quaternion.Euler(90, 0, 0)); var rightMatrix = GetCameraMatrixForAngle(Quaternion.Euler(0, 90, 0)); var forwardMatrix = GetCameraMatrixForAngle(Quaternion.Euler(0, 0, 90)); var props = new MaterialPropertyBlock(); bool hasGeometry = renderers.Count > 0 || terrains.Count > 0; var cellAABB = cellVolume.CalculateAABB(); // Setup voxelize material properties voxelizeMaterial.SetVector(_OutputSize, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth)); voxelizeMaterial.SetVector(_VolumeWorldOffset, cellAABB.center - cellAABB.extents); voxelizeMaterial.SetVector(_VolumeSize, cellAABB.size); if (hasGeometry) { using (new ProfilingScope(cmd, new ProfilingSampler("Clear"))) { cmd.SetComputeTextureParam(subdivideSceneCS, s_ClearKernel, _Output, ctx.sceneSDF); cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth)); cmd.SetComputeFloatParam(subdivideSceneCS, _ClearValue, 0); DispatchCompute(cmd, s_ClearKernel, ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth); } } cmd.SetRandomWriteTarget(k_RandomWriteBindingIndex, ctx.sceneSDF); // We need to bind at least something for rendering cmd.SetRenderTarget(ctx.dummyRenderTarget); cmd.SetViewport(new Rect(0, 0, ctx.dummyRenderTarget.width, ctx.dummyRenderTarget.height)); if (renderers.Count > 0) { using (new ProfilingScope(cmd, new ProfilingSampler("Rasterize Meshes 3D"))) { foreach (var kp in renderers) { // Only mesh renderers are supported for this voxelization pass. var renderer = kp.component as MeshRenderer; if (renderer == null) continue; if (cellAABB.Intersects(renderer.bounds)) { if (renderer.TryGetComponent(out var meshFilter) && meshFilter.sharedMesh != null) { for (int submesh = 0; submesh < meshFilter.sharedMesh.subMeshCount; submesh++) { props.SetInt(_AxisSwizzle, 0); cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props); props.SetInt(_AxisSwizzle, 1); cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props); props.SetInt(_AxisSwizzle, 2); cmd.DrawMesh(meshFilter.sharedMesh, renderer.transform.localToWorldMatrix, voxelizeMaterial, submesh, shaderPass: 0, props); } } } } } } if (terrains.Count > 0) { using (new ProfilingScope(cmd, new ProfilingSampler("Rasterize Terrains"))) { foreach (var kp in terrains) { var terrainData = kp.terrain.terrainData; // Terrains can't be rotated or scaled var transform = Matrix4x4.Translate(kp.terrain.GetPosition()); props.SetTexture("_TerrainHeightmapTexture", terrainData.heightmapTexture); props.SetTexture("_TerrainHolesTexture", terrainData.holesTexture); props.SetVector("_TerrainSize", terrainData.size); props.SetFloat("_TerrainHeightmapResolution", terrainData.heightmapResolution); int terrainTileCount = terrainData.heightmapResolution * terrainData.heightmapResolution; props.SetInt(_AxisSwizzle, 0); cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props); props.SetInt(_AxisSwizzle, 1); cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props); props.SetInt(_AxisSwizzle, 2); cmd.DrawProcedural(transform, voxelizeMaterial, shaderPass: 1, MeshTopology.Quads, 4 * terrainTileCount, 1, props); } } } Matrix4x4 GetCameraMatrixForAngle(Quaternion rotation) { cellVolume.CalculateCenterAndSize(out var center, out var size); Vector3 cameraSize = new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth) / 2.0f; cameraSize = size / 2; var worldToCamera = Matrix4x4.TRS(Vector3.zero, rotation, Vector3.one); var projection = Matrix4x4.Ortho(-cameraSize.x, cameraSize.x, -cameraSize.y, cameraSize.y, 0, cameraSize.z * 2); return Matrix4x4.Rotate(Quaternion.Euler((Time.realtimeSinceStartup * 10f) % 360, 0, 0)); } cmd.ClearRandomWriteTargets(); return hasGeometry; } static void DispatchCompute(CommandBuffer cmd, int kernel, int width, int height, int depth = 1) { // If any issue occur on mac / intel GPU devices regarding the probe subdivision, it's likely to be // the GetKernelThreadGroupSizes returning wrong values. subdivideSceneCS.GetKernelThreadGroupSizes(kernel, out uint x, out uint y, out uint z); cmd.DispatchCompute( subdivideSceneCS, kernel, Mathf.Max(1, Mathf.CeilToInt(width / (float)x)), Mathf.Max(1, Mathf.CeilToInt(height / (float)y)), Mathf.Max(1, Mathf.CeilToInt(depth / (float)z))); } static void CopyTexture(CommandBuffer cmd, RenderTexture source, RenderTexture destination) { using (new ProfilingScope(cmd, new ProfilingSampler("Copy"))) { for (int i = 0; i < source.volumeDepth; i++) cmd.CopyTexture(source, i, 0, destination, i, 0); } } static void GenerateDistanceField(CommandBuffer cmd, RenderTexture sceneSDF1, RenderTexture sceneSDF2) { using (new ProfilingScope(cmd, new ProfilingSampler("GenerateDistanceField"))) { // Generate distance field with JFA cmd.SetComputeVectorParam(subdivideSceneCS, _Size, new Vector4(sceneSDF1.width, 1.0f / sceneSDF1.width)); // We need those copies because there is a compute barrier bug only happening on low-resolution textures CopyTexture(cmd, sceneSDF1, sceneSDF2); // Jump flooding implementation based on https://www.comp.nus.edu.sg/~tants/jfa.html using (new ProfilingScope(cmd, new ProfilingSampler("JumpFlooding"))) { cmd.SetComputeTextureParam(subdivideSceneCS, s_FillUVKernel, _Input, sceneSDF2); cmd.SetComputeTextureParam(subdivideSceneCS, s_FillUVKernel, _Output, sceneSDF1); DispatchCompute(cmd, s_FillUVKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth); int maxLevels = (int)Mathf.Log(sceneSDF1.width, 2); for (int i = 0; i <= maxLevels; i++) { float offset = 1 << (maxLevels - i); cmd.SetComputeFloatParam(subdivideSceneCS, _Offset, offset); cmd.SetComputeTextureParam(subdivideSceneCS, s_JumpFloodingKernel, _Input, sceneSDF1); cmd.SetComputeTextureParam(subdivideSceneCS, s_JumpFloodingKernel, _Output, sceneSDF2); DispatchCompute(cmd, s_JumpFloodingKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth); CopyTexture(cmd, sceneSDF2, sceneSDF1); } } CopyTexture(cmd, sceneSDF2, sceneSDF1); cmd.SetComputeTextureParam(subdivideSceneCS, s_FinalPassKernel, _Input, sceneSDF2); cmd.SetComputeTextureParam(subdivideSceneCS, s_FinalPassKernel, _Output, sceneSDF1); DispatchCompute(cmd, s_FinalPassKernel, sceneSDF1.width, sceneSDF1.height, sceneSDF1.volumeDepth); } } static int GetMaxSubdivision(GPUSubdivisionContext ctx, float multiplier) => Mathf.CeilToInt(ctx.maxSubdivisionLevelInSubCell * multiplier); static void VoxelizeProbeVolumeData(CommandBuffer cmd, Bounds cellAABB, List<(ProbeVolume component, ProbeReferenceVolume.Volume volume)> probeVolumes, GPUSubdivisionContext ctx) { using (new ProfilingScope(cmd, new ProfilingSampler("Voxelize Probe Volume Data"))) { List gpuProbeVolumes = new List(); // Prepare list of GPU probe volumes foreach (var kp in probeVolumes) { int minSubdiv = GetMaxSubdivision(ctx, kp.component.GetMinSubdivMultiplier()); int maxSubdiv = GetMaxSubdivision(ctx, kp.component.GetMaxSubdivMultiplier()); // Constrain the probe volume AABB inside the cell var pvAABB = kp.volume.CalculateAABB(); pvAABB.min = Vector3.Max(pvAABB.min, cellAABB.min); pvAABB.max = Vector3.Min(pvAABB.max, cellAABB.max); // Compute the max size of a brick that can fit in the smallest dimension of a probe volume float minSizedDim = Mathf.Min(pvAABB.size.x, Mathf.Min(pvAABB.size.y, pvAABB.size.z)); float minSideInBricks = Mathf.CeilToInt(minSizedDim / ProbeReferenceVolume.instance.MinBrickSize()); int absoluteMaxSubdiv = ProbeReferenceVolume.instance.GetMaxSubdivision() - 1; minSideInBricks = Mathf.Max(minSideInBricks, Mathf.Pow(3, absoluteMaxSubdiv - maxSubdiv)); int subdivLevel = Mathf.FloorToInt(Mathf.Log(minSideInBricks, 3)); gpuProbeVolumes.Add(new GPUProbeVolumeOBB { corner = kp.volume.corner, X = kp.volume.X, Y = kp.volume.Y, Z = kp.volume.Z, minControllerSubdivLevel = minSubdiv, maxControllerSubdivLevel = maxSubdiv, maxSubdivLevelInsideVolume = subdivLevel, geometryDistanceOffset = kp.component.geometryDistanceOffset, }); } cmd.SetBufferData(ctx.probeVolumesBuffer, gpuProbeVolumes); cmd.SetComputeBufferParam(subdivideSceneCS, s_VoxelizeProbeVolumesKernel, _ProbeVolumes, ctx.probeVolumesBuffer); cmd.SetComputeFloatParam(subdivideSceneCS, _ProbeVolumeCount, probeVolumes.Count); cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeWorldOffset, cellAABB.center - cellAABB.extents); cmd.SetComputeVectorParam(subdivideSceneCS, _MaxBrickSize, Vector3.one * ctx.maxBrickCountPerAxisInSubCell); int subdivisionLevelCount = (int)Mathf.Log(ctx.maxBrickCountPerAxisInSubCell, 3); for (int i = 0; i <= subdivisionLevelCount; i++) { int brickCountPerAxis = (int)Mathf.Pow(3, ctx.maxSubdivisionLevelInSubCell - i); cmd.SetComputeFloatParam(subdivideSceneCS, _BrickSize, cellAABB.size.x / brickCountPerAxis); cmd.SetComputeTextureParam(subdivideSceneCS, s_VoxelizeProbeVolumesKernel, _Output, ctx.sceneSDF2, i); DispatchCompute(cmd, s_VoxelizeProbeVolumesKernel, brickCountPerAxis, brickCountPerAxis, brickCountPerAxis); } } } static void SubdivideFromDistanceField( CommandBuffer cmd, Bounds volume, GPUSubdivisionContext ctx, RenderTexture probeVolumeData, ComputeBuffer buffer, int brickCount, int subdivisionLevel, float minBrickSize) { using (new ProfilingScope(cmd, new ProfilingSampler($"Subdivide Bricks at level {Mathf.Log(brickCount, 3)}"))) { // We convert the world space volume position (of a corner) in bricks. // This is necessary to have correct brick position (the position calculated in the compute shader needs to be in number of bricks from the reference volume (origin)). Vector3 volumeBrickPosition = (volume.center - volume.extents) / minBrickSize; cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeOffsetInBricks, volumeBrickPosition); cmd.SetComputeBufferParam(subdivideSceneCS, s_SubdivideKernel, _Bricks, buffer); cmd.SetComputeVectorParam(subdivideSceneCS, _MaxBrickSize, Vector3.one * brickCount); cmd.SetComputeFloatParam(subdivideSceneCS, _SubdivisionLevel, subdivisionLevel); cmd.SetComputeFloatParam(subdivideSceneCS, _MaxSubdivisionLevel, ctx.maxSubdivisionLevelInSubCell); cmd.SetComputeVectorParam(subdivideSceneCS, _VolumeSizeInBricks, Vector3.one * ctx.maxBrickCountPerAxisInSubCell); cmd.SetComputeVectorParam(subdivideSceneCS, _SDFSize, new Vector3(ctx.sceneSDF.width, ctx.sceneSDF.height, ctx.sceneSDF.volumeDepth)); cmd.SetComputeTextureParam(subdivideSceneCS, s_SubdivideKernel, _Input, ctx.sceneSDF); cmd.SetComputeTextureParam(subdivideSceneCS, s_SubdivideKernel, _ProbeVolumeData, probeVolumeData); DispatchCompute(cmd, s_SubdivideKernel, brickCount, brickCount, brickCount); } } } } #endif