Singularity/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/UnityGBuffer.hlsl
2024-05-06 11:45:45 -07:00

285 lines
12 KiB
HLSL

#ifndef UNIVERSAL_GBUFFERUTIL_INCLUDED
#define UNIVERSAL_GBUFFERUTIL_INCLUDED
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/SurfaceData.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"
// inspired from [builtin_shaders]/CGIncludes/UnityGBuffer.cginc
// Non-static meshes with real-time lighting need to write shadow mask, which in that case stores per-object occlusion probe values.
#if !defined(LIGHTMAP_ON) && defined(LIGHTMAP_SHADOW_MIXING) && !defined(SHADOWS_SHADOWMASK)
#define OUTPUT_SHADOWMASK 1 // subtractive
#elif defined(SHADOWS_SHADOWMASK)
#define OUTPUT_SHADOWMASK 2 // shadow mask
#elif defined(_DEFERRED_MIXED_LIGHTING)
#define OUTPUT_SHADOWMASK 3 // we don't know if it's subtractive or just shadowMap (from deferred lighting shader, LIGHTMAP_ON does not need to be defined)
#else
#endif
#if _RENDER_PASS_ENABLED
#define GBUFFER_OPTIONAL_SLOT_1 GBuffer4
#define GBUFFER_OPTIONAL_SLOT_1_TYPE float
#if OUTPUT_SHADOWMASK && defined(_LIGHT_LAYERS)
#define GBUFFER_OPTIONAL_SLOT_2 GBuffer5
#define GBUFFER_OPTIONAL_SLOT_3 GBuffer6
#define GBUFFER_LIGHT_LAYERS GBuffer5
#define GBUFFER_SHADOWMASK GBuffer6
#elif OUTPUT_SHADOWMASK
#define GBUFFER_OPTIONAL_SLOT_2 GBuffer5
#define GBUFFER_SHADOWMASK GBuffer5
#elif defined(_LIGHT_LAYERS)
#define GBUFFER_OPTIONAL_SLOT_2 GBuffer5
#define GBUFFER_LIGHT_LAYERS GBuffer5
#endif //#if OUTPUT_SHADOWMASK && defined(_LIGHT_LAYERS)
#else
#define GBUFFER_OPTIONAL_SLOT_1_TYPE half4
#if OUTPUT_SHADOWMASK && defined(_LIGHT_LAYERS)
#define GBUFFER_OPTIONAL_SLOT_1 GBuffer4
#define GBUFFER_OPTIONAL_SLOT_2 GBuffer5
#define GBUFFER_LIGHT_LAYERS GBuffer4
#define GBUFFER_SHADOWMASK GBuffer5
#elif OUTPUT_SHADOWMASK
#define GBUFFER_OPTIONAL_SLOT_1 GBuffer4
#define GBUFFER_SHADOWMASK GBuffer4
#elif defined(_LIGHT_LAYERS)
#define GBUFFER_OPTIONAL_SLOT_1 GBuffer4
#define GBUFFER_LIGHT_LAYERS GBuffer4
#endif //#if OUTPUT_SHADOWMASK && defined(_LIGHT_LAYERS)
#endif //#if _RENDER_PASS_ENABLED
#define kLightingInvalid -1 // No dynamic lighting: can aliase any other material type as they are skipped using stencil
#define kLightingLit 1 // lit shader
#define kLightingSimpleLit 2 // Simple lit shader
// clearcoat 3
// backscatter 4
// skin 5
// Material flags
#define kMaterialFlagReceiveShadowsOff 1 // Does not receive dynamic shadows
#define kMaterialFlagSpecularHighlightsOff 2 // Does not receivce specular
#define kMaterialFlagSubtractiveMixedLighting 4 // The geometry uses subtractive mixed lighting
#define kMaterialFlagSpecularSetup 8 // Lit material use specular setup instead of metallic setup
// Light flags.
#define kLightFlagSubtractiveMixedLighting 4 // The light uses subtractive mixed lighting.
struct FragmentOutput
{
half4 GBuffer0 : SV_Target0;
half4 GBuffer1 : SV_Target1;
half4 GBuffer2 : SV_Target2;
half4 GBuffer3 : SV_Target3; // Camera color attachment
#ifdef GBUFFER_OPTIONAL_SLOT_1
GBUFFER_OPTIONAL_SLOT_1_TYPE GBuffer4 : SV_Target4;
#endif
#ifdef GBUFFER_OPTIONAL_SLOT_2
half4 GBuffer5 : SV_Target5;
#endif
#ifdef GBUFFER_OPTIONAL_SLOT_3
half4 GBuffer6 : SV_Target6;
#endif
};
float PackMaterialFlags(uint materialFlags)
{
return materialFlags * (1.0h / 255.0h);
}
uint UnpackMaterialFlags(float packedMaterialFlags)
{
return uint((packedMaterialFlags * 255.0h) + 0.5h);
}
#ifdef _GBUFFER_NORMALS_OCT
half3 PackNormal(half3 n)
{
float2 octNormalWS = PackNormalOctQuadEncode(n); // values between [-1, +1], must use fp32 on some platforms.
float2 remappedOctNormalWS = saturate(octNormalWS * 0.5 + 0.5); // values between [ 0, +1]
return half3(PackFloat2To888(remappedOctNormalWS)); // values between [ 0, +1]
}
half3 UnpackNormal(half3 pn)
{
half2 remappedOctNormalWS = half2(Unpack888ToFloat2(pn)); // values between [ 0, +1]
half2 octNormalWS = remappedOctNormalWS.xy * half(2.0) - half(1.0);// values between [-1, +1]
return half3(UnpackNormalOctQuadEncode(octNormalWS)); // values between [-1, +1]
}
#else
half3 PackNormal(half3 n)
{ return n; } // values between [-1, +1]
half3 UnpackNormal(half3 pn)
{ return pn; } // values between [-1, +1]
#endif
// This will encode SurfaceData into GBuffer
FragmentOutput SurfaceDataToGbuffer(SurfaceData surfaceData, InputData inputData, half3 globalIllumination, int lightingMode)
{
half3 packedNormalWS = PackNormal(inputData.normalWS);
uint materialFlags = 0;
// SimpleLit does not use _SPECULARHIGHLIGHTS_OFF to disable specular highlights.
#ifdef _RECEIVE_SHADOWS_OFF
materialFlags |= kMaterialFlagReceiveShadowsOff;
#endif
#if defined(LIGHTMAP_ON) && defined(_MIXED_LIGHTING_SUBTRACTIVE)
materialFlags |= kMaterialFlagSubtractiveMixedLighting;
#endif
FragmentOutput output;
output.GBuffer0 = half4(surfaceData.albedo.rgb, PackMaterialFlags(materialFlags)); // albedo albedo albedo materialFlags (sRGB rendertarget)
output.GBuffer1 = half4(surfaceData.specular.rgb, surfaceData.occlusion); // specular specular specular occlusion
output.GBuffer2 = half4(packedNormalWS, surfaceData.smoothness); // encoded-normal encoded-normal encoded-normal smoothness
output.GBuffer3 = half4(globalIllumination, 1); // GI GI GI [optional: see OutputAlpha()] (lighting buffer)
#if _RENDER_PASS_ENABLED
output.GBuffer4 = inputData.positionCS.z;
#endif
#if OUTPUT_SHADOWMASK
output.GBUFFER_SHADOWMASK = inputData.shadowMask; // will have unity_ProbesOcclusion value if subtractive lighting is used (baked)
#endif
#ifdef _LIGHT_LAYERS
uint renderingLayers = GetMeshRenderingLightLayer();
// Note: we need to mask out only 8bits of the layer mask before encoding it as otherwise any value > 255 will map to all layers active
output.GBUFFER_LIGHT_LAYERS = float4((renderingLayers & 0x000000FF) / 255.0, 0.0, 0.0, 0.0);
#endif
return output;
}
// This decodes the Gbuffer into a SurfaceData struct
SurfaceData SurfaceDataFromGbuffer(half4 gbuffer0, half4 gbuffer1, half4 gbuffer2, int lightingMode)
{
SurfaceData surfaceData;
surfaceData.albedo = gbuffer0.rgb;
uint materialFlags = UnpackMaterialFlags(gbuffer0.a);
surfaceData.occlusion = 1.0; // Not used by SimpleLit material.
surfaceData.specular = gbuffer1.rgb;
half smoothness = gbuffer2.a;
surfaceData.metallic = 0.0; // Not used by SimpleLit material.
surfaceData.alpha = 1.0; // gbuffer only contains opaque materials
surfaceData.smoothness = smoothness;
surfaceData.emission = (half3)0; // Note: this is not made available at lighting pass in this renderer - emission contribution is included (with GI) in the value GBuffer3.rgb, that is used as a renderTarget during lighting
surfaceData.normalTS = (half3)0; // Note: does this normalTS member need to be in SurfaceData? It looks like an intermediate value
return surfaceData;
}
// This will encode SurfaceData into GBuffer
FragmentOutput BRDFDataToGbuffer(BRDFData brdfData, InputData inputData, half smoothness, half3 globalIllumination, half occlusion = 1.0)
{
half3 packedNormalWS = PackNormal(inputData.normalWS);
uint materialFlags = 0;
#ifdef _RECEIVE_SHADOWS_OFF
materialFlags |= kMaterialFlagReceiveShadowsOff;
#endif
half3 packedSpecular;
#ifdef _SPECULAR_SETUP
materialFlags |= kMaterialFlagSpecularSetup;
packedSpecular = brdfData.specular.rgb;
#else
packedSpecular.r = brdfData.reflectivity;
packedSpecular.gb = 0.0;
#endif
#ifdef _SPECULARHIGHLIGHTS_OFF
// During the next deferred shading pass, we don't use a shader variant to disable specular calculations.
// Instead, we can either silence specular contribution when writing the gbuffer, and/or reserve a bit in the gbuffer
// and use this during shading to skip computations via dynamic branching. Fastest option depends on platforms.
materialFlags |= kMaterialFlagSpecularHighlightsOff;
packedSpecular = 0.0.xxx;
#endif
#if defined(LIGHTMAP_ON) && defined(_MIXED_LIGHTING_SUBTRACTIVE)
materialFlags |= kMaterialFlagSubtractiveMixedLighting;
#endif
FragmentOutput output;
output.GBuffer0 = half4(brdfData.albedo.rgb, PackMaterialFlags(materialFlags)); // diffuse diffuse diffuse materialFlags (sRGB rendertarget)
output.GBuffer1 = half4(packedSpecular, occlusion); // metallic/specular specular specular occlusion
output.GBuffer2 = half4(packedNormalWS, smoothness); // encoded-normal encoded-normal encoded-normal smoothness
output.GBuffer3 = half4(globalIllumination, 1); // GI GI GI [optional: see OutputAlpha()] (lighting buffer)
#if _RENDER_PASS_ENABLED
output.GBuffer4 = inputData.positionCS.z;
#endif
#if OUTPUT_SHADOWMASK
output.GBUFFER_SHADOWMASK = inputData.shadowMask; // will have unity_ProbesOcclusion value if subtractive lighting is used (baked)
#endif
#ifdef _LIGHT_LAYERS
uint renderingLayers = GetMeshRenderingLightLayer();
// Note: we need to mask out only 8bits of the layer mask before encoding it as otherwise any value > 255 will map to all layers active
output.GBUFFER_LIGHT_LAYERS = float4((renderingLayers & 0x000000FF) / 255.0, 0.0, 0.0, 0.0);
#endif
return output;
}
// This decodes the Gbuffer into a SurfaceData struct
BRDFData BRDFDataFromGbuffer(half4 gbuffer0, half4 gbuffer1, half4 gbuffer2)
{
half3 albedo = gbuffer0.rgb;
half3 specular = gbuffer1.rgb;
uint materialFlags = UnpackMaterialFlags(gbuffer0.a);
half smoothness = gbuffer2.a;
BRDFData brdfData = (BRDFData)0;
half alpha = half(1.0); // NOTE: alpha can get modfied, forward writes it out (_ALPHAPREMULTIPLY_ON).
half3 brdfDiffuse;
half3 brdfSpecular;
half reflectivity;
half oneMinusReflectivity;
if ((materialFlags & kMaterialFlagSpecularSetup) != 0)
{
// Specular setup
reflectivity = ReflectivitySpecular(specular);
oneMinusReflectivity = half(1.0) - reflectivity;
brdfDiffuse = albedo * oneMinusReflectivity;
brdfSpecular = specular;
}
else
{
// Metallic setup
reflectivity = specular.r;
oneMinusReflectivity = 1.0 - reflectivity;
half metallic = MetallicFromReflectivity(reflectivity);
brdfDiffuse = albedo * oneMinusReflectivity;
brdfSpecular = lerp(kDieletricSpec.rgb, albedo, metallic);
}
InitializeBRDFDataDirect(albedo, brdfDiffuse, brdfSpecular, reflectivity, oneMinusReflectivity, smoothness, alpha, brdfData);
return brdfData;
}
InputData InputDataFromGbufferAndWorldPosition(half4 gbuffer2, float3 wsPos)
{
InputData inputData = (InputData)0;
inputData.positionWS = wsPos;
inputData.normalWS = normalize(UnpackNormal(gbuffer2.xyz)); // normalize() is required because terrain shaders use additive blending for normals (not unit-length anymore)
inputData.viewDirectionWS = GetWorldSpaceNormalizeViewDir(wsPos.xyz);
// TODO: pass this info?
inputData.shadowCoord = (float4)0;
inputData.fogCoord = (half )0;
inputData.vertexLighting = (half3 )0;
inputData.bakedGI = (half3)0; // Note: this is not made available at lighting pass in this renderer - bakedGI contribution is included (with emission) in the value GBuffer3.rgb, that is used as a renderTarget during lighting
return inputData;
}
#endif // UNIVERSAL_GBUFFERUTIL_INCLUDED