571 lines
30 KiB
C#
571 lines
30 KiB
C#
using Unity.Collections;
|
|
using UnityEngine.PlayerLoop;
|
|
using Unity.Jobs;
|
|
using UnityEngine.Assertions;
|
|
using Unity.Mathematics;
|
|
using Unity.Collections.LowLevel.Unsafe;
|
|
using UnityEditor;
|
|
|
|
namespace UnityEngine.Rendering.Universal.Internal
|
|
{
|
|
/// <summary>
|
|
/// Computes and submits lighting data to the GPU.
|
|
/// </summary>
|
|
public class ForwardLights
|
|
{
|
|
static class LightConstantBuffer
|
|
{
|
|
public static int _MainLightPosition; // DeferredLights.LightConstantBuffer also refers to the same ShaderPropertyID - TODO: move this definition to a common location shared by other UniversalRP classes
|
|
public static int _MainLightColor; // DeferredLights.LightConstantBuffer also refers to the same ShaderPropertyID - TODO: move this definition to a common location shared by other UniversalRP classes
|
|
public static int _MainLightOcclusionProbesChannel; // Deferred?
|
|
public static int _MainLightLayerMask;
|
|
|
|
public static int _AdditionalLightsCount;
|
|
public static int _AdditionalLightsPosition;
|
|
public static int _AdditionalLightsColor;
|
|
public static int _AdditionalLightsAttenuation;
|
|
public static int _AdditionalLightsSpotDir;
|
|
public static int _AdditionalLightOcclusionProbeChannel;
|
|
public static int _AdditionalLightsLayerMasks;
|
|
}
|
|
|
|
int m_AdditionalLightsBufferId;
|
|
int m_AdditionalLightsIndicesId;
|
|
|
|
const string k_SetupLightConstants = "Setup Light Constants";
|
|
private static readonly ProfilingSampler m_ProfilingSampler = new ProfilingSampler(k_SetupLightConstants);
|
|
MixedLightingSetup m_MixedLightingSetup;
|
|
|
|
Vector4[] m_AdditionalLightPositions;
|
|
Vector4[] m_AdditionalLightColors;
|
|
Vector4[] m_AdditionalLightAttenuations;
|
|
Vector4[] m_AdditionalLightSpotDirections;
|
|
Vector4[] m_AdditionalLightOcclusionProbeChannels;
|
|
float[] m_AdditionalLightsLayerMasks; // Unity has no support for binding uint arrays. We will use asuint() in the shader instead.
|
|
|
|
bool m_UseStructuredBuffer;
|
|
|
|
bool m_UseClusteredRendering;
|
|
int m_DirectionalLightCount;
|
|
int m_ActualTileWidth;
|
|
int2 m_TileResolution;
|
|
int m_RequestedTileWidth;
|
|
float m_ZBinFactor;
|
|
int m_ZBinOffset;
|
|
|
|
JobHandle m_CullingHandle;
|
|
NativeArray<ZBin> m_ZBins;
|
|
NativeArray<uint> m_TileLightMasks;
|
|
|
|
ComputeBuffer m_ZBinBuffer;
|
|
ComputeBuffer m_TileBuffer;
|
|
|
|
private LightCookieManager m_LightCookieManager;
|
|
|
|
internal struct InitParams
|
|
{
|
|
public LightCookieManager lightCookieManager;
|
|
public bool clusteredRendering;
|
|
public int tileSize;
|
|
|
|
static internal InitParams GetDefault()
|
|
{
|
|
InitParams p;
|
|
{
|
|
var settings = LightCookieManager.Settings.GetDefault();
|
|
var asset = UniversalRenderPipeline.asset;
|
|
if (asset)
|
|
{
|
|
settings.atlas.format = asset.additionalLightsCookieFormat;
|
|
settings.atlas.resolution = asset.additionalLightsCookieResolution;
|
|
}
|
|
|
|
p.lightCookieManager = new LightCookieManager(ref settings);
|
|
p.clusteredRendering = false;
|
|
p.tileSize = 32;
|
|
}
|
|
return p;
|
|
}
|
|
}
|
|
|
|
public ForwardLights() : this(InitParams.GetDefault()) { }
|
|
|
|
internal ForwardLights(InitParams initParams)
|
|
{
|
|
if (initParams.clusteredRendering) Assert.IsTrue(math.ispow2(initParams.tileSize));
|
|
m_UseStructuredBuffer = RenderingUtils.useStructuredBuffer;
|
|
m_UseClusteredRendering = initParams.clusteredRendering;
|
|
|
|
LightConstantBuffer._MainLightPosition = Shader.PropertyToID("_MainLightPosition");
|
|
LightConstantBuffer._MainLightColor = Shader.PropertyToID("_MainLightColor");
|
|
LightConstantBuffer._MainLightOcclusionProbesChannel = Shader.PropertyToID("_MainLightOcclusionProbes");
|
|
LightConstantBuffer._MainLightLayerMask = Shader.PropertyToID("_MainLightLayerMask");
|
|
LightConstantBuffer._AdditionalLightsCount = Shader.PropertyToID("_AdditionalLightsCount");
|
|
|
|
if (m_UseStructuredBuffer)
|
|
{
|
|
m_AdditionalLightsBufferId = Shader.PropertyToID("_AdditionalLightsBuffer");
|
|
m_AdditionalLightsIndicesId = Shader.PropertyToID("_AdditionalLightsIndices");
|
|
}
|
|
else
|
|
{
|
|
LightConstantBuffer._AdditionalLightsPosition = Shader.PropertyToID("_AdditionalLightsPosition");
|
|
LightConstantBuffer._AdditionalLightsColor = Shader.PropertyToID("_AdditionalLightsColor");
|
|
LightConstantBuffer._AdditionalLightsAttenuation = Shader.PropertyToID("_AdditionalLightsAttenuation");
|
|
LightConstantBuffer._AdditionalLightsSpotDir = Shader.PropertyToID("_AdditionalLightsSpotDir");
|
|
LightConstantBuffer._AdditionalLightOcclusionProbeChannel = Shader.PropertyToID("_AdditionalLightsOcclusionProbes");
|
|
LightConstantBuffer._AdditionalLightsLayerMasks = Shader.PropertyToID("_AdditionalLightsLayerMasks");
|
|
|
|
int maxLights = UniversalRenderPipeline.maxVisibleAdditionalLights;
|
|
m_AdditionalLightPositions = new Vector4[maxLights];
|
|
m_AdditionalLightColors = new Vector4[maxLights];
|
|
m_AdditionalLightAttenuations = new Vector4[maxLights];
|
|
m_AdditionalLightSpotDirections = new Vector4[maxLights];
|
|
m_AdditionalLightOcclusionProbeChannels = new Vector4[maxLights];
|
|
m_AdditionalLightsLayerMasks = new float[maxLights];
|
|
}
|
|
|
|
m_LightCookieManager = initParams.lightCookieManager;
|
|
|
|
if (m_UseClusteredRendering)
|
|
{
|
|
m_ZBinBuffer = new ComputeBuffer(UniversalRenderPipeline.maxZBins / 4, UnsafeUtility.SizeOf<float4>(), ComputeBufferType.Constant, ComputeBufferMode.Dynamic);
|
|
m_TileBuffer = new ComputeBuffer(UniversalRenderPipeline.maxTileVec4s, UnsafeUtility.SizeOf<float4>(), ComputeBufferType.Constant, ComputeBufferMode.Dynamic);
|
|
m_RequestedTileWidth = initParams.tileSize;
|
|
}
|
|
}
|
|
|
|
internal void ProcessLights(ref RenderingData renderingData)
|
|
{
|
|
if (m_UseClusteredRendering)
|
|
{
|
|
var camera = renderingData.cameraData.camera;
|
|
var screenResolution = math.int2(renderingData.cameraData.pixelWidth, renderingData.cameraData.pixelHeight);
|
|
|
|
var lightCount = renderingData.lightData.visibleLights.Length;
|
|
var lightOffset = 0;
|
|
while (lightOffset < lightCount && renderingData.lightData.visibleLights[lightOffset].lightType == LightType.Directional)
|
|
{
|
|
lightOffset++;
|
|
}
|
|
if (lightOffset == lightCount) lightOffset = 0;
|
|
lightCount -= lightOffset;
|
|
|
|
m_DirectionalLightCount = lightOffset;
|
|
if (renderingData.lightData.mainLightIndex != -1) m_DirectionalLightCount -= 1;
|
|
|
|
var visibleLights = renderingData.lightData.visibleLights.GetSubArray(lightOffset, lightCount);
|
|
var lightsPerTile = UniversalRenderPipeline.lightsPerTile;
|
|
var wordsPerTile = lightsPerTile / 32;
|
|
|
|
m_ActualTileWidth = m_RequestedTileWidth >> 1;
|
|
do
|
|
{
|
|
m_ActualTileWidth = m_ActualTileWidth << 1;
|
|
m_TileResolution = (screenResolution + m_ActualTileWidth - 1) / m_ActualTileWidth;
|
|
}
|
|
while ((m_TileResolution.x * m_TileResolution.y * wordsPerTile) > (UniversalRenderPipeline.maxTileVec4s * 4));
|
|
|
|
var fovHalfHeight = math.tan(math.radians(camera.fieldOfView * 0.5f));
|
|
// TODO: Make this work with VR
|
|
var fovHalfWidth = fovHalfHeight * (float)screenResolution.x / (float)screenResolution.y;
|
|
|
|
var maxZFactor = (float)UniversalRenderPipeline.maxZBins / (math.sqrt(camera.farClipPlane) - math.sqrt(camera.nearClipPlane));
|
|
m_ZBinFactor = maxZFactor;
|
|
m_ZBinOffset = (int)(math.sqrt(camera.nearClipPlane) * m_ZBinFactor);
|
|
var binCount = (int)(math.sqrt(camera.farClipPlane) * m_ZBinFactor) - m_ZBinOffset;
|
|
// Must be a multiple of 4 to be able to alias to vec4
|
|
binCount = ((binCount + 3) / 4) * 4;
|
|
binCount = math.min(UniversalRenderPipeline.maxZBins, binCount);
|
|
m_ZBins = new NativeArray<ZBin>(binCount, Allocator.TempJob);
|
|
Assert.AreEqual(UnsafeUtility.SizeOf<uint>(), UnsafeUtility.SizeOf<ZBin>());
|
|
|
|
using var minMaxZs = new NativeArray<LightMinMaxZ>(lightCount, Allocator.TempJob);
|
|
// We allocate double array length because the sorting algorithm needs swap space to work in.
|
|
using var meanZs = new NativeArray<float>(lightCount * 2, Allocator.TempJob);
|
|
|
|
Matrix4x4 worldToViewMatrix = renderingData.cameraData.GetViewMatrix();
|
|
var minMaxZJob = new MinMaxZJob
|
|
{
|
|
worldToViewMatrix = worldToViewMatrix,
|
|
lights = visibleLights,
|
|
minMaxZs = minMaxZs,
|
|
meanZs = meanZs
|
|
};
|
|
// Innerloop batch count of 32 is not special, just a handwavy amount to not have too much scheduling overhead nor too little parallelism.
|
|
var minMaxZHandle = minMaxZJob.ScheduleParallel(lightCount, 32, new JobHandle());
|
|
|
|
// We allocate double array length because the sorting algorithm needs swap space to work in.
|
|
using var indices = new NativeArray<int>(lightCount * 2, Allocator.TempJob);
|
|
var radixSortJob = new RadixSortJob
|
|
{
|
|
// Floats can be sorted bitwise with no special handling if positive floats only
|
|
keys = meanZs.Reinterpret<uint>(),
|
|
indices = indices
|
|
};
|
|
var zSortHandle = radixSortJob.Schedule(minMaxZHandle);
|
|
|
|
var reorderedLights = new NativeArray<VisibleLight>(lightCount, Allocator.TempJob);
|
|
var reorderedMinMaxZs = new NativeArray<LightMinMaxZ>(lightCount, Allocator.TempJob);
|
|
|
|
var reorderLightsJob = new ReorderJob<VisibleLight> { indices = indices, input = visibleLights, output = reorderedLights };
|
|
var reorderLightsHandle = reorderLightsJob.ScheduleParallel(lightCount, 32, zSortHandle);
|
|
|
|
var reorderMinMaxZsJob = new ReorderJob<LightMinMaxZ> { indices = indices, input = minMaxZs, output = reorderedMinMaxZs };
|
|
var reorderMinMaxZsHandle = reorderMinMaxZsJob.ScheduleParallel(lightCount, 32, zSortHandle);
|
|
|
|
var reorderHandle = JobHandle.CombineDependencies(
|
|
reorderLightsHandle,
|
|
reorderMinMaxZsHandle
|
|
);
|
|
|
|
JobHandle.ScheduleBatchedJobs();
|
|
|
|
LightExtractionJob lightExtractionJob;
|
|
lightExtractionJob.lights = reorderedLights;
|
|
var lightTypes = lightExtractionJob.lightTypes = new NativeArray<LightType>(lightCount, Allocator.TempJob);
|
|
var radiuses = lightExtractionJob.radiuses = new NativeArray<float>(lightCount, Allocator.TempJob);
|
|
var directions = lightExtractionJob.directions = new NativeArray<float3>(lightCount, Allocator.TempJob);
|
|
var positions = lightExtractionJob.positions = new NativeArray<float3>(lightCount, Allocator.TempJob);
|
|
var coneRadiuses = lightExtractionJob.coneRadiuses = new NativeArray<float>(lightCount, Allocator.TempJob);
|
|
var lightExtractionHandle = lightExtractionJob.ScheduleParallel(lightCount, 32, reorderHandle);
|
|
|
|
var zBinningJob = new ZBinningJob
|
|
{
|
|
bins = m_ZBins,
|
|
minMaxZs = reorderedMinMaxZs,
|
|
binOffset = m_ZBinOffset,
|
|
zFactor = m_ZBinFactor
|
|
};
|
|
var zBinningHandle = zBinningJob.ScheduleParallel((binCount + ZBinningJob.batchCount - 1) / ZBinningJob.batchCount, 1, reorderHandle);
|
|
reorderedMinMaxZs.Dispose(zBinningHandle);
|
|
|
|
// Must be a multiple of 4 to be able to alias to vec4
|
|
var lightMasksLength = (((wordsPerTile) * m_TileResolution + 3) / 4) * 4;
|
|
var horizontalLightMasks = new NativeArray<uint>(lightMasksLength.y, Allocator.TempJob);
|
|
var verticalLightMasks = new NativeArray<uint>(lightMasksLength.x, Allocator.TempJob);
|
|
|
|
// Vertical slices along the x-axis
|
|
var verticalJob = new SliceCullingJob
|
|
{
|
|
scale = (float)m_ActualTileWidth / (float)screenResolution.x,
|
|
viewOrigin = camera.transform.position,
|
|
viewForward = camera.transform.forward,
|
|
viewRight = camera.transform.right * fovHalfWidth,
|
|
viewUp = camera.transform.up * fovHalfHeight,
|
|
lightTypes = lightTypes,
|
|
radiuses = radiuses,
|
|
directions = directions,
|
|
positions = positions,
|
|
coneRadiuses = coneRadiuses,
|
|
lightsPerTile = lightsPerTile,
|
|
sliceLightMasks = verticalLightMasks
|
|
};
|
|
var verticalHandle = verticalJob.ScheduleParallel(m_TileResolution.x, 1, lightExtractionHandle);
|
|
|
|
// Horizontal slices along the y-axis
|
|
var horizontalJob = verticalJob;
|
|
horizontalJob.scale = (float)m_ActualTileWidth / (float)screenResolution.y;
|
|
horizontalJob.viewRight = camera.transform.up * fovHalfHeight;
|
|
horizontalJob.viewUp = -camera.transform.right * fovHalfWidth;
|
|
horizontalJob.sliceLightMasks = horizontalLightMasks;
|
|
var horizontalHandle = horizontalJob.ScheduleParallel(m_TileResolution.y, 1, lightExtractionHandle);
|
|
|
|
var slicesHandle = JobHandle.CombineDependencies(horizontalHandle, verticalHandle);
|
|
|
|
m_TileLightMasks = new NativeArray<uint>(((m_TileResolution.x * m_TileResolution.y * (wordsPerTile) + 3) / 4) * 4, Allocator.TempJob);
|
|
var sliceCombineJob = new SliceCombineJob
|
|
{
|
|
tileResolution = m_TileResolution,
|
|
wordsPerTile = wordsPerTile,
|
|
sliceLightMasksH = horizontalLightMasks,
|
|
sliceLightMasksV = verticalLightMasks,
|
|
lightMasks = m_TileLightMasks
|
|
};
|
|
var sliceCombineHandle = sliceCombineJob.ScheduleParallel(m_TileResolution.y, 1, slicesHandle);
|
|
|
|
m_CullingHandle = JobHandle.CombineDependencies(sliceCombineHandle, zBinningHandle);
|
|
|
|
reorderHandle.Complete();
|
|
NativeArray<VisibleLight>.Copy(reorderedLights, 0, renderingData.lightData.visibleLights, lightOffset, lightCount);
|
|
|
|
var tempBias = new NativeArray<Vector4>(lightCount, Allocator.Temp);
|
|
var tempResolution = new NativeArray<int>(lightCount, Allocator.Temp);
|
|
var tempIndices = new NativeArray<int>(lightCount, Allocator.Temp);
|
|
|
|
for (var i = 0; i < lightCount; i++)
|
|
{
|
|
tempBias[indices[i]] = renderingData.shadowData.bias[lightOffset + i];
|
|
tempResolution[indices[i]] = renderingData.shadowData.resolution[lightOffset + i];
|
|
tempIndices[indices[i]] = lightOffset + i;
|
|
}
|
|
|
|
for (var i = 0; i < lightCount; i++)
|
|
{
|
|
renderingData.shadowData.bias[i + lightOffset] = tempBias[i];
|
|
renderingData.shadowData.resolution[i + lightOffset] = tempResolution[i];
|
|
renderingData.lightData.originalIndices[i + lightOffset] = tempIndices[i];
|
|
}
|
|
|
|
tempBias.Dispose();
|
|
tempResolution.Dispose();
|
|
tempIndices.Dispose();
|
|
|
|
lightTypes.Dispose(m_CullingHandle);
|
|
radiuses.Dispose(m_CullingHandle);
|
|
directions.Dispose(m_CullingHandle);
|
|
positions.Dispose(m_CullingHandle);
|
|
coneRadiuses.Dispose(m_CullingHandle);
|
|
reorderedLights.Dispose(m_CullingHandle);
|
|
horizontalLightMasks.Dispose(m_CullingHandle);
|
|
verticalLightMasks.Dispose(m_CullingHandle);
|
|
JobHandle.ScheduleBatchedJobs();
|
|
}
|
|
}
|
|
|
|
public void Setup(ScriptableRenderContext context, ref RenderingData renderingData)
|
|
{
|
|
int additionalLightsCount = renderingData.lightData.additionalLightsCount;
|
|
bool additionalLightsPerVertex = renderingData.lightData.shadeAdditionalLightsPerVertex;
|
|
CommandBuffer cmd = CommandBufferPool.Get();
|
|
using (new ProfilingScope(null, m_ProfilingSampler))
|
|
{
|
|
var useClusteredRendering = m_UseClusteredRendering;
|
|
if (useClusteredRendering)
|
|
{
|
|
m_CullingHandle.Complete();
|
|
|
|
m_ZBinBuffer.SetData(m_ZBins.Reinterpret<float4>(UnsafeUtility.SizeOf<ZBin>()), 0, 0, m_ZBins.Length / 4);
|
|
m_TileBuffer.SetData(m_TileLightMasks.Reinterpret<float4>(UnsafeUtility.SizeOf<uint>()), 0, 0, m_TileLightMasks.Length / 4);
|
|
|
|
cmd.SetGlobalInteger("_AdditionalLightsDirectionalCount", m_DirectionalLightCount);
|
|
cmd.SetGlobalInteger("_AdditionalLightsZBinOffset", m_ZBinOffset);
|
|
cmd.SetGlobalFloat("_AdditionalLightsZBinScale", m_ZBinFactor);
|
|
cmd.SetGlobalVector("_AdditionalLightsTileScale", renderingData.cameraData.pixelRect.size / (float)m_ActualTileWidth);
|
|
cmd.SetGlobalInteger("_AdditionalLightsTileCountX", m_TileResolution.x);
|
|
|
|
cmd.SetGlobalConstantBuffer(m_ZBinBuffer, "AdditionalLightsZBins", 0, m_ZBins.Length * 4);
|
|
cmd.SetGlobalConstantBuffer(m_TileBuffer, "AdditionalLightsTiles", 0, m_TileLightMasks.Length * 4);
|
|
|
|
m_ZBins.Dispose();
|
|
m_TileLightMasks.Dispose();
|
|
}
|
|
|
|
SetupShaderLightConstants(cmd, ref renderingData);
|
|
|
|
bool lightCountCheck = (renderingData.cameraData.renderer.stripAdditionalLightOffVariants && renderingData.lightData.supportsAdditionalLights) || additionalLightsCount > 0;
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.AdditionalLightsVertex,
|
|
lightCountCheck && additionalLightsPerVertex && !useClusteredRendering);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.AdditionalLightsPixel,
|
|
lightCountCheck && !additionalLightsPerVertex && !useClusteredRendering);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.ClusteredRendering,
|
|
useClusteredRendering);
|
|
|
|
bool isShadowMask = renderingData.lightData.supportsMixedLighting && m_MixedLightingSetup == MixedLightingSetup.ShadowMask;
|
|
bool isShadowMaskAlways = isShadowMask && QualitySettings.shadowmaskMode == ShadowmaskMode.Shadowmask;
|
|
bool isSubtractive = renderingData.lightData.supportsMixedLighting && m_MixedLightingSetup == MixedLightingSetup.Subtractive;
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.LightmapShadowMixing, isSubtractive || isShadowMaskAlways);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.ShadowsShadowMask, isShadowMask);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.MixedLightingSubtractive, isSubtractive); // Backward compatibility
|
|
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.ReflectionProbeBlending, renderingData.lightData.reflectionProbeBlending);
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.ReflectionProbeBoxProjection, renderingData.lightData.reflectionProbeBoxProjection);
|
|
|
|
bool lightLayers = renderingData.lightData.supportsLightLayers;
|
|
CoreUtils.SetKeyword(cmd, ShaderKeywordStrings.LightLayers, lightLayers);
|
|
|
|
m_LightCookieManager.Setup(context, cmd, ref renderingData.lightData);
|
|
}
|
|
context.ExecuteCommandBuffer(cmd);
|
|
CommandBufferPool.Release(cmd);
|
|
}
|
|
|
|
internal void Cleanup()
|
|
{
|
|
if (m_UseClusteredRendering)
|
|
{
|
|
m_ZBinBuffer.Dispose();
|
|
m_TileBuffer.Dispose();
|
|
}
|
|
}
|
|
|
|
void InitializeLightConstants(NativeArray<VisibleLight> lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out Vector4 lightOcclusionProbeChannel, out uint lightLayerMask)
|
|
{
|
|
UniversalRenderPipeline.InitializeLightConstants_Common(lights, lightIndex, out lightPos, out lightColor, out lightAttenuation, out lightSpotDir, out lightOcclusionProbeChannel);
|
|
lightLayerMask = 0;
|
|
|
|
// When no lights are visible, main light will be set to -1.
|
|
// In this case we initialize it to default values and return
|
|
if (lightIndex < 0)
|
|
return;
|
|
|
|
VisibleLight lightData = lights[lightIndex];
|
|
Light light = lightData.light;
|
|
|
|
if (light == null)
|
|
return;
|
|
|
|
if (light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed &&
|
|
lightData.light.shadows != LightShadows.None &&
|
|
m_MixedLightingSetup == MixedLightingSetup.None)
|
|
{
|
|
switch (light.bakingOutput.mixedLightingMode)
|
|
{
|
|
case MixedLightingMode.Subtractive:
|
|
m_MixedLightingSetup = MixedLightingSetup.Subtractive;
|
|
break;
|
|
case MixedLightingMode.Shadowmask:
|
|
m_MixedLightingSetup = MixedLightingSetup.ShadowMask;
|
|
break;
|
|
}
|
|
}
|
|
|
|
var additionalLightData = light.GetUniversalAdditionalLightData();
|
|
lightLayerMask = (uint)additionalLightData.lightLayerMask;
|
|
}
|
|
|
|
void SetupShaderLightConstants(CommandBuffer cmd, ref RenderingData renderingData)
|
|
{
|
|
m_MixedLightingSetup = MixedLightingSetup.None;
|
|
|
|
// Main light has an optimized shader path for main light. This will benefit games that only care about a single light.
|
|
// Universal pipeline also supports only a single shadow light, if available it will be the main light.
|
|
SetupMainLightConstants(cmd, ref renderingData.lightData);
|
|
SetupAdditionalLightConstants(cmd, ref renderingData);
|
|
}
|
|
|
|
void SetupMainLightConstants(CommandBuffer cmd, ref LightData lightData)
|
|
{
|
|
Vector4 lightPos, lightColor, lightAttenuation, lightSpotDir, lightOcclusionChannel;
|
|
uint lightLayerMask;
|
|
InitializeLightConstants(lightData.visibleLights, lightData.mainLightIndex, out lightPos, out lightColor, out lightAttenuation, out lightSpotDir, out lightOcclusionChannel, out lightLayerMask);
|
|
|
|
cmd.SetGlobalVector(LightConstantBuffer._MainLightPosition, lightPos);
|
|
cmd.SetGlobalVector(LightConstantBuffer._MainLightColor, lightColor);
|
|
cmd.SetGlobalVector(LightConstantBuffer._MainLightOcclusionProbesChannel, lightOcclusionChannel);
|
|
cmd.SetGlobalInt(LightConstantBuffer._MainLightLayerMask, (int)lightLayerMask);
|
|
}
|
|
|
|
void SetupAdditionalLightConstants(CommandBuffer cmd, ref RenderingData renderingData)
|
|
{
|
|
ref LightData lightData = ref renderingData.lightData;
|
|
var cullResults = renderingData.cullResults;
|
|
var lights = lightData.visibleLights;
|
|
int maxAdditionalLightsCount = UniversalRenderPipeline.maxVisibleAdditionalLights;
|
|
int additionalLightsCount = SetupPerObjectLightIndices(cullResults, ref lightData);
|
|
if (additionalLightsCount > 0)
|
|
{
|
|
if (m_UseStructuredBuffer)
|
|
{
|
|
NativeArray<ShaderInput.LightData> additionalLightsData = new NativeArray<ShaderInput.LightData>(additionalLightsCount, Allocator.Temp);
|
|
for (int i = 0, lightIter = 0; i < lights.Length && lightIter < maxAdditionalLightsCount; ++i)
|
|
{
|
|
VisibleLight light = lights[i];
|
|
if (lightData.mainLightIndex != i)
|
|
{
|
|
ShaderInput.LightData data;
|
|
InitializeLightConstants(lights, i,
|
|
out data.position, out data.color, out data.attenuation,
|
|
out data.spotDirection, out data.occlusionProbeChannels,
|
|
out data.layerMask);
|
|
additionalLightsData[lightIter] = data;
|
|
lightIter++;
|
|
}
|
|
}
|
|
|
|
var lightDataBuffer = ShaderData.instance.GetLightDataBuffer(additionalLightsCount);
|
|
lightDataBuffer.SetData(additionalLightsData);
|
|
|
|
int lightIndices = cullResults.lightAndReflectionProbeIndexCount;
|
|
var lightIndicesBuffer = ShaderData.instance.GetLightIndicesBuffer(lightIndices);
|
|
|
|
cmd.SetGlobalBuffer(m_AdditionalLightsBufferId, lightDataBuffer);
|
|
cmd.SetGlobalBuffer(m_AdditionalLightsIndicesId, lightIndicesBuffer);
|
|
|
|
additionalLightsData.Dispose();
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0, lightIter = 0; i < lights.Length && lightIter < maxAdditionalLightsCount; ++i)
|
|
{
|
|
VisibleLight light = lights[i];
|
|
if (lightData.mainLightIndex != i)
|
|
{
|
|
uint lightLayerMask;
|
|
InitializeLightConstants(lights, i, out m_AdditionalLightPositions[lightIter],
|
|
out m_AdditionalLightColors[lightIter],
|
|
out m_AdditionalLightAttenuations[lightIter],
|
|
out m_AdditionalLightSpotDirections[lightIter],
|
|
out m_AdditionalLightOcclusionProbeChannels[lightIter],
|
|
out lightLayerMask);
|
|
m_AdditionalLightsLayerMasks[lightIter] = Unity.Mathematics.math.asfloat(lightLayerMask);
|
|
lightIter++;
|
|
}
|
|
}
|
|
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsPosition, m_AdditionalLightPositions);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsColor, m_AdditionalLightColors);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsAttenuation, m_AdditionalLightAttenuations);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightsSpotDir, m_AdditionalLightSpotDirections);
|
|
cmd.SetGlobalVectorArray(LightConstantBuffer._AdditionalLightOcclusionProbeChannel, m_AdditionalLightOcclusionProbeChannels);
|
|
cmd.SetGlobalFloatArray(LightConstantBuffer._AdditionalLightsLayerMasks, m_AdditionalLightsLayerMasks);
|
|
}
|
|
|
|
cmd.SetGlobalVector(LightConstantBuffer._AdditionalLightsCount, new Vector4(lightData.maxPerObjectAdditionalLightsCount,
|
|
0.0f, 0.0f, 0.0f));
|
|
}
|
|
else
|
|
{
|
|
cmd.SetGlobalVector(LightConstantBuffer._AdditionalLightsCount, Vector4.zero);
|
|
}
|
|
}
|
|
|
|
int SetupPerObjectLightIndices(CullingResults cullResults, ref LightData lightData)
|
|
{
|
|
if (lightData.additionalLightsCount == 0)
|
|
return lightData.additionalLightsCount;
|
|
|
|
var visibleLights = lightData.visibleLights;
|
|
var perObjectLightIndexMap = cullResults.GetLightIndexMap(Allocator.Temp);
|
|
int globalDirectionalLightsCount = 0;
|
|
int additionalLightsCount = 0;
|
|
|
|
// Disable all directional lights from the perobject light indices
|
|
// Pipeline handles main light globally and there's no support for additional directional lights atm.
|
|
for (int i = 0; i < visibleLights.Length; ++i)
|
|
{
|
|
if (additionalLightsCount >= UniversalRenderPipeline.maxVisibleAdditionalLights)
|
|
break;
|
|
|
|
VisibleLight light = visibleLights[i];
|
|
if (i == lightData.mainLightIndex)
|
|
{
|
|
perObjectLightIndexMap[i] = -1;
|
|
++globalDirectionalLightsCount;
|
|
}
|
|
else
|
|
{
|
|
perObjectLightIndexMap[i] -= globalDirectionalLightsCount;
|
|
++additionalLightsCount;
|
|
}
|
|
}
|
|
|
|
// Disable all remaining lights we cannot fit into the global light buffer.
|
|
for (int i = globalDirectionalLightsCount + additionalLightsCount; i < perObjectLightIndexMap.Length; ++i)
|
|
perObjectLightIndexMap[i] = -1;
|
|
|
|
cullResults.SetLightIndexMap(perObjectLightIndexMap);
|
|
|
|
if (m_UseStructuredBuffer && additionalLightsCount > 0)
|
|
{
|
|
int lightAndReflectionProbeIndices = cullResults.lightAndReflectionProbeIndexCount;
|
|
Assertions.Assert.IsTrue(lightAndReflectionProbeIndices > 0, "Pipelines configures additional lights but per-object light and probe indices count is zero.");
|
|
cullResults.FillLightAndReflectionProbeIndices(ShaderData.instance.GetLightIndicesBuffer(lightAndReflectionProbeIndices));
|
|
}
|
|
|
|
perObjectLightIndexMap.Dispose();
|
|
return additionalLightsCount;
|
|
}
|
|
}
|
|
}
|