913 lines
29 KiB
C#
913 lines
29 KiB
C#
using System;
|
|
using Unity.Profiling;
|
|
using Unity.Collections;
|
|
using Unity.Mathematics;
|
|
using Unity.Collections.LowLevel.Unsafe;
|
|
|
|
namespace UnityEngine.Rendering.Universal.UTess
|
|
{
|
|
|
|
// Constrained Delaunay Triangulation.
|
|
struct Tessellator
|
|
{
|
|
|
|
// For Processing.
|
|
NativeArray<int2> m_Edges;
|
|
NativeArray<UStar> m_Stars;
|
|
NativeArray<int3> m_Cells;
|
|
int m_CellCount;
|
|
|
|
// For Storage.
|
|
NativeArray<int> m_ILArray;
|
|
NativeArray<int> m_IUArray;
|
|
NativeArray<int> m_SPArray;
|
|
int m_NumEdges;
|
|
int m_NumHulls;
|
|
int m_NumPoints;
|
|
int m_StarCount;
|
|
|
|
// Intermediates.
|
|
NativeArray<int> m_Flags;
|
|
NativeArray<int> m_Neighbors;
|
|
NativeArray<int> m_Constraints;
|
|
Allocator m_Allocator;
|
|
|
|
struct TestHullPointL : ICondition2<UHull, float2>
|
|
{
|
|
public bool Test(UHull h, float2 p, ref float t)
|
|
{
|
|
t = ModuleHandle.OrientFast(h.a, h.b, p);
|
|
return t < 0;
|
|
}
|
|
}
|
|
|
|
struct TestHullPointU : ICondition2<UHull, float2>
|
|
{
|
|
public bool Test(UHull h, float2 p, ref float t)
|
|
{
|
|
t = ModuleHandle.OrientFast(h.a, h.b, p);
|
|
return t > 0;
|
|
}
|
|
}
|
|
|
|
static float FindSplit(UHull hull, UEvent edge)
|
|
{
|
|
float d = 0;
|
|
if (hull.a.x < edge.a.x)
|
|
{
|
|
d = ModuleHandle.OrientFast(hull.a, hull.b, edge.a);
|
|
}
|
|
else
|
|
{
|
|
d = ModuleHandle.OrientFast(edge.b, edge.a, hull.a);
|
|
}
|
|
|
|
if (0 != d)
|
|
{
|
|
return d;
|
|
}
|
|
|
|
if (edge.b.x < hull.b.x)
|
|
{
|
|
d = ModuleHandle.OrientFast(hull.a, hull.b, edge.b);
|
|
}
|
|
else
|
|
{
|
|
d = ModuleHandle.OrientFast(edge.b, edge.a, hull.b);
|
|
}
|
|
|
|
if (0 != d)
|
|
{
|
|
return d;
|
|
}
|
|
return hull.idx - edge.idx;
|
|
}
|
|
|
|
struct TestHullEventLe : ICondition2<UHull, UEvent>
|
|
{
|
|
public bool Test(UHull h, UEvent p, ref float t)
|
|
{
|
|
t = FindSplit(h, p);
|
|
return t <= 0;
|
|
}
|
|
}
|
|
|
|
struct TestHullEventE : ICondition2<UHull, UEvent>
|
|
{
|
|
public bool Test(UHull h, UEvent p, ref float t)
|
|
{
|
|
t = FindSplit(h, p);
|
|
return t == 0;
|
|
}
|
|
}
|
|
|
|
void SetAllocator(Allocator allocator)
|
|
{
|
|
m_Allocator = allocator;
|
|
}
|
|
|
|
bool AddPoint(NativeArray<UHull> hulls, int hullCount, NativeArray<float2> points, float2 p, int idx)
|
|
{
|
|
int l = ModuleHandle.GetLower(hulls, hullCount, p, new TestHullPointL());
|
|
int u = ModuleHandle.GetUpper(hulls, hullCount, p, new TestHullPointU());
|
|
if (l < 0 || u < 0)
|
|
return false;
|
|
for (int i = l; i < u; ++i)
|
|
{
|
|
UHull hull = hulls[i];
|
|
|
|
int m = hull.ilcount;
|
|
while (m > 1 && ModuleHandle.OrientFast(points[hull.ilarray[m - 2]], points[hull.ilarray[m - 1]], p) > 0)
|
|
{
|
|
int3 c = new int3();
|
|
c.x = hull.ilarray[m - 1];
|
|
c.y = hull.ilarray[m - 2];
|
|
c.z = idx;
|
|
m_Cells[m_CellCount++] = c;
|
|
m -= 1;
|
|
}
|
|
|
|
hull.ilcount = m + 1;
|
|
if (hull.ilcount > hull.ilarray.Length)
|
|
return false;
|
|
hull.ilarray[m] = idx;
|
|
|
|
m = hull.iucount;
|
|
while (m > 1 && ModuleHandle.OrientFast(points[hull.iuarray[m - 2]], points[hull.iuarray[m - 1]], p) < 0)
|
|
{
|
|
int3 c = new int3();
|
|
c.x = hull.iuarray[m - 2];
|
|
c.y = hull.iuarray[m - 1];
|
|
c.z = idx;
|
|
m_Cells[m_CellCount++] = c;
|
|
m -= 1;
|
|
}
|
|
|
|
hull.iucount = m + 1;
|
|
if (hull.iucount > hull.iuarray.Length)
|
|
return false;
|
|
hull.iuarray[m] = idx;
|
|
|
|
hulls[i] = hull;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void InsertHull(NativeArray<UHull> Hulls, int Pos, ref int Count, UHull Value)
|
|
{
|
|
if (Count < Hulls.Length - 1)
|
|
{
|
|
for (int i = Count; i > Pos; --i)
|
|
Hulls[i] = Hulls[i - 1];
|
|
Hulls[Pos] = Value;
|
|
Count++;
|
|
}
|
|
}
|
|
|
|
static void EraseHull(NativeArray<UHull> Hulls, int Pos, ref int Count)
|
|
{
|
|
if (Count < Hulls.Length)
|
|
{
|
|
for (int i = Pos; i < Count - 1; ++i)
|
|
Hulls[i] = Hulls[i + 1];
|
|
Count--;
|
|
}
|
|
}
|
|
|
|
bool SplitHulls(NativeArray<UHull> hulls, ref int hullCount, NativeArray<float2> points, UEvent evt)
|
|
{
|
|
int index = ModuleHandle.GetLower(hulls, hullCount, evt, new TestHullEventLe());
|
|
if (index < 0)
|
|
return false;
|
|
|
|
UHull hull = hulls[index];
|
|
|
|
UHull newHull;
|
|
newHull.a = evt.a;
|
|
newHull.b = evt.b;
|
|
newHull.idx = evt.idx;
|
|
|
|
int y = hull.iuarray[hull.iucount - 1];
|
|
newHull.iuarray = new ArraySlice<int>(m_IUArray, newHull.idx * m_NumHulls, m_NumHulls);
|
|
newHull.iucount = hull.iucount;
|
|
for (int i = 0; i < newHull.iucount; ++i)
|
|
newHull.iuarray[i] = hull.iuarray[i];
|
|
hull.iuarray[0] = y;
|
|
hull.iucount = 1;
|
|
hulls[index] = hull;
|
|
|
|
newHull.ilarray = new ArraySlice<int>(m_ILArray, newHull.idx * m_NumHulls, m_NumHulls);
|
|
newHull.ilarray[0] = y;
|
|
newHull.ilcount = 1;
|
|
|
|
InsertHull(hulls, index + 1, ref hullCount, newHull);
|
|
return true;
|
|
}
|
|
|
|
bool MergeHulls(NativeArray<UHull> hulls, ref int hullCount, NativeArray<float2> points, UEvent evt)
|
|
{
|
|
float2 temp = evt.a;
|
|
evt.a = evt.b;
|
|
evt.b = temp;
|
|
int index = ModuleHandle.GetEqual(hulls, hullCount, evt, new TestHullEventE());
|
|
if (index < 0)
|
|
return false;
|
|
|
|
UHull upper = hulls[index];
|
|
UHull lower = hulls[index - 1];
|
|
|
|
lower.iucount = upper.iucount;
|
|
for (int i = 0; i < lower.iucount; ++i)
|
|
lower.iuarray[i] = upper.iuarray[i];
|
|
|
|
hulls[index - 1] = lower;
|
|
EraseHull(hulls, index, ref hullCount);
|
|
return true;
|
|
}
|
|
|
|
static void InsertUniqueEdge(NativeArray<int2> edges, int2 e, ref int edgeCount)
|
|
{
|
|
TessEdgeCompare edgeComparer = new TessEdgeCompare();
|
|
var validEdge = true;
|
|
for (int j = 0; validEdge && j < edgeCount; ++j)
|
|
if (edgeComparer.Compare(e, edges[j]) == 0)
|
|
validEdge = false;
|
|
if (validEdge)
|
|
edges[edgeCount++] = e;
|
|
}
|
|
|
|
void PrepareDelaunay(NativeArray<int2> edges, int edgeCount)
|
|
{
|
|
m_StarCount = m_CellCount * 3;
|
|
m_Stars = new NativeArray<UStar>(m_StarCount, m_Allocator);
|
|
m_SPArray = new NativeArray<int>(m_StarCount * m_StarCount, m_Allocator);
|
|
|
|
var UEdgeCount = 0;
|
|
var UEdges = new NativeArray<int2>(m_StarCount, m_Allocator);
|
|
|
|
// Input Edges.
|
|
for (int i = 0; i < edgeCount; ++i)
|
|
{
|
|
int2 e = edges[i];
|
|
e.x = (edges[i].x < edges[i].y) ? edges[i].x : edges[i].y;
|
|
e.y = (edges[i].x > edges[i].y) ? edges[i].x : edges[i].y;
|
|
edges[i] = e;
|
|
InsertUniqueEdge(UEdges, e, ref UEdgeCount);
|
|
}
|
|
|
|
m_Edges = new NativeArray<int2>(UEdgeCount, m_Allocator);
|
|
for (int i = 0; i < UEdgeCount; ++i)
|
|
m_Edges[i] = UEdges[i];
|
|
UEdges.Dispose();
|
|
|
|
unsafe
|
|
{
|
|
ModuleHandle.InsertionSort<int2, TessEdgeCompare>(
|
|
NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(m_Edges), 0, m_Edges.Length - 1,
|
|
new TessEdgeCompare());
|
|
}
|
|
|
|
// Init Stars.
|
|
for (int i = 0; i < m_StarCount; ++i)
|
|
{
|
|
UStar s = m_Stars[i];
|
|
s.points = new ArraySlice<int>(m_SPArray, i * m_StarCount, m_StarCount);
|
|
s.pointCount = 0;
|
|
m_Stars[i] = s;
|
|
}
|
|
|
|
// Fill stars.
|
|
for (int i = 0; i < m_CellCount; ++i)
|
|
{
|
|
int a = m_Cells[i].x;
|
|
int b = m_Cells[i].y;
|
|
int c = m_Cells[i].z;
|
|
UStar sa = m_Stars[a];
|
|
UStar sb = m_Stars[b];
|
|
UStar sc = m_Stars[c];
|
|
sa.points[sa.pointCount++] = b;
|
|
sa.points[sa.pointCount++] = c;
|
|
sb.points[sb.pointCount++] = c;
|
|
sb.points[sb.pointCount++] = a;
|
|
sc.points[sc.pointCount++] = a;
|
|
sc.points[sc.pointCount++] = b;
|
|
m_Stars[a] = sa;
|
|
m_Stars[b] = sb;
|
|
m_Stars[c] = sc;
|
|
}
|
|
|
|
}
|
|
|
|
int OppositeOf(int a, int b)
|
|
{
|
|
ArraySlice<int> points = m_Stars[b].points;
|
|
for (int k = 1, n = m_Stars[b].pointCount; k < n; k += 2)
|
|
if (points[k] == a)
|
|
return points[k - 1];
|
|
return -1;
|
|
}
|
|
|
|
struct TestEdgePointE : ICondition2<int2, int2>
|
|
{
|
|
public bool Test(int2 h, int2 p, ref float t)
|
|
{
|
|
TessEdgeCompare tc = new TessEdgeCompare();
|
|
t = tc.Compare(h, p);
|
|
return t == 0;
|
|
}
|
|
}
|
|
|
|
int FindConstraint(int a, int b)
|
|
{
|
|
int2 e;
|
|
e.x = a < b ? a : b;
|
|
e.y = a > b ? a : b;
|
|
return ModuleHandle.GetEqual(m_Edges, m_Edges.Length, e, new TestEdgePointE());
|
|
}
|
|
|
|
void AddTriangle(int i, int j, int k)
|
|
{
|
|
UStar si = m_Stars[i];
|
|
UStar sj = m_Stars[j];
|
|
UStar sk = m_Stars[k];
|
|
si.points[si.pointCount++] = j;
|
|
si.points[si.pointCount++] = k;
|
|
sj.points[sj.pointCount++] = k;
|
|
sj.points[sj.pointCount++] = i;
|
|
sk.points[sk.pointCount++] = i;
|
|
sk.points[sk.pointCount++] = j;
|
|
m_Stars[i] = si;
|
|
m_Stars[j] = sj;
|
|
m_Stars[k] = sk;
|
|
}
|
|
|
|
void RemovePair(int r, int j, int k)
|
|
{
|
|
UStar s = m_Stars[r];
|
|
ArraySlice<int> points = s.points;
|
|
for (int i = 1, n = s.pointCount; i < n; i += 2)
|
|
{
|
|
if (points[i - 1] == j && points[i] == k)
|
|
{
|
|
points[i - 1] = points[n - 2];
|
|
points[i] = points[n - 1];
|
|
s.points = points;
|
|
s.pointCount = s.pointCount - 2;
|
|
m_Stars[r] = s;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RemoveTriangle(int i, int j, int k)
|
|
{
|
|
RemovePair(i, j, k);
|
|
RemovePair(j, k, i);
|
|
RemovePair(k, i, j);
|
|
}
|
|
|
|
void EdgeFlip(int i, int j)
|
|
{
|
|
int a = OppositeOf(i, j);
|
|
int b = OppositeOf(j, i);
|
|
RemoveTriangle(i, j, a);
|
|
RemoveTriangle(j, i, b);
|
|
AddTriangle(i, b, a);
|
|
AddTriangle(j, a, b);
|
|
}
|
|
|
|
bool Flip(NativeArray<float2> points, ref NativeArray<int> stack, ref int stackCount, int a, int b, int x)
|
|
{
|
|
int y = OppositeOf(a, b);
|
|
|
|
if (y < 0)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (b < a)
|
|
{
|
|
int tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
tmp = x;
|
|
x = y;
|
|
y = tmp;
|
|
}
|
|
|
|
if (FindConstraint(a, b) != -1)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
if (ModuleHandle.IsInsideCircle(points[a], points[b], points[x], points[y]))
|
|
{
|
|
if ((2 + stackCount) >= stack.Length)
|
|
return false;
|
|
stack[stackCount++] = a;
|
|
stack[stackCount++] = b;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
NativeArray<int3> GetCells(ref int count)
|
|
{
|
|
NativeArray<int3> cellsOut = new NativeArray<int3>(m_NumPoints * (m_NumPoints + 1), m_Allocator);
|
|
count = 0;
|
|
for (int i = 0, n = m_Stars.Length; i < n; ++i)
|
|
{
|
|
ArraySlice<int> points = m_Stars[i].points;
|
|
for (int j = 0, m = m_Stars[i].pointCount; j < m; j += 2)
|
|
{
|
|
int s = points[j];
|
|
int t = points[j + 1];
|
|
if (i < math.min(s, t))
|
|
{
|
|
int3 c = new int3();
|
|
c.x = i;
|
|
c.y = s;
|
|
c.z = t;
|
|
cellsOut[count++] = c;
|
|
}
|
|
}
|
|
}
|
|
|
|
return cellsOut;
|
|
}
|
|
|
|
internal bool ApplyDelaunay(NativeArray<float2> points, NativeArray<int2> edges)
|
|
{
|
|
|
|
// Early out if cannot find any valid cells.
|
|
if (0 == m_CellCount)
|
|
return false;
|
|
|
|
NativeArray<int> stack = new NativeArray<int>(m_NumPoints * (m_NumPoints + 1), m_Allocator);
|
|
int stackCount = 0;
|
|
var valid = true;
|
|
|
|
PrepareDelaunay(edges, m_NumEdges);
|
|
for (int a = 0; valid && (a < m_NumPoints); ++a)
|
|
{
|
|
UStar star = m_Stars[a];
|
|
for (int j = 1; j < star.pointCount; j += 2)
|
|
{
|
|
int b = star.points[j];
|
|
|
|
if (b < a)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (FindConstraint(a, b) >= 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
int x = star.points[j - 1], y = -1;
|
|
for (int k = 1; k < star.pointCount; k += 2)
|
|
{
|
|
if (star.points[k - 1] == b)
|
|
{
|
|
y = star.points[k];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (y < 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (ModuleHandle.IsInsideCircle(points[a], points[b], points[x], points[y]))
|
|
{
|
|
if ((2 + stackCount) >= stack.Length)
|
|
{
|
|
valid = false;
|
|
break;
|
|
}
|
|
|
|
stack[stackCount++] = a;
|
|
stack[stackCount++] = b;
|
|
}
|
|
}
|
|
}
|
|
|
|
var flipFlops = m_NumPoints * m_NumPoints;
|
|
while (stackCount > 0 && valid)
|
|
{
|
|
int b = stack[stackCount - 1];
|
|
stackCount--;
|
|
int a = stack[stackCount - 1];
|
|
stackCount--;
|
|
|
|
int x = -1, y = -1;
|
|
UStar star = m_Stars[a];
|
|
for (int i = 1; i < star.pointCount; i += 2)
|
|
{
|
|
int s = star.points[i - 1];
|
|
int t = star.points[i];
|
|
if (s == b)
|
|
{
|
|
y = t;
|
|
}
|
|
else if (t == b)
|
|
{
|
|
x = s;
|
|
}
|
|
}
|
|
|
|
if (x < 0 || y < 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (!ModuleHandle.IsInsideCircle(points[a], points[b], points[x], points[y]))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
EdgeFlip(a, b);
|
|
|
|
valid = Flip(points, ref stack, ref stackCount, x, a, y);
|
|
valid = valid && Flip(points, ref stack, ref stackCount, a, y, x);
|
|
valid = valid && Flip(points, ref stack, ref stackCount, y, b, x);
|
|
valid = valid && Flip(points, ref stack, ref stackCount, b, x, y);
|
|
valid = valid && (--flipFlops > 0);
|
|
}
|
|
|
|
stack.Dispose();
|
|
return valid;
|
|
}
|
|
|
|
struct TestCellE : ICondition2<int3, int3>
|
|
{
|
|
public bool Test(int3 h, int3 p, ref float t)
|
|
{
|
|
TessCellCompare tc = new TessCellCompare();
|
|
t = tc.Compare(h, p);
|
|
return t == 0;
|
|
}
|
|
}
|
|
|
|
int FindNeighbor(NativeArray<int3> cells, int count, int a, int b, int c)
|
|
{
|
|
int x = a, y = b, z = c;
|
|
if (b < c)
|
|
{
|
|
if (b < a)
|
|
{
|
|
x = b;
|
|
y = c;
|
|
z = a;
|
|
}
|
|
}
|
|
else if (c < a)
|
|
{
|
|
x = c;
|
|
y = a;
|
|
z = b;
|
|
}
|
|
|
|
if (x < 0)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
int3 key;
|
|
key.x = x;
|
|
key.y = y;
|
|
key.z = z;
|
|
return ModuleHandle.GetEqual(cells, count, key, new TestCellE());
|
|
}
|
|
|
|
NativeArray<int3> Constrain(ref int count)
|
|
{
|
|
var cells = GetCells(ref count);
|
|
int nc = count;
|
|
for (int i = 0; i < nc; ++i)
|
|
{
|
|
int3 c = cells[i];
|
|
int x = c.x, y = c.y, z = c.z;
|
|
if (y < z)
|
|
{
|
|
if (y < x)
|
|
{
|
|
c.x = y;
|
|
c.y = z;
|
|
c.z = x;
|
|
}
|
|
}
|
|
else if (z < x)
|
|
{
|
|
c.x = z;
|
|
c.y = x;
|
|
c.z = y;
|
|
}
|
|
|
|
cells[i] = c;
|
|
}
|
|
|
|
unsafe
|
|
{
|
|
ModuleHandle.InsertionSort<int3, TessCellCompare>(
|
|
NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(cells), 0, m_CellCount - 1,
|
|
new TessCellCompare());
|
|
}
|
|
|
|
// Out
|
|
m_Flags = new NativeArray<int>(nc, m_Allocator);
|
|
m_Neighbors = new NativeArray<int>(nc * 3, m_Allocator);
|
|
m_Constraints = new NativeArray<int>(nc * 3, m_Allocator);
|
|
var next = new NativeArray<int>(nc * 3, m_Allocator);
|
|
var active = new NativeArray<int>(nc * 3, m_Allocator);
|
|
|
|
int side = 1, nextCount = 0, activeCount = 0;
|
|
|
|
for (int i = 0; i < nc; ++i)
|
|
{
|
|
int3 c = cells[i];
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
int x = j, y = (j + 1) % 3;
|
|
x = (x == 0) ? c.x : (j == 1) ? c.y : c.z;
|
|
y = (y == 0) ? c.x : (y == 1) ? c.y : c.z;
|
|
|
|
int o = OppositeOf(y, x);
|
|
int a = m_Neighbors[3 * i + j] = FindNeighbor(cells, count, y, x, o);
|
|
int b = m_Constraints[3 * i + j] = (-1 != FindConstraint(x, y)) ? 1 : 0;
|
|
if (a < 0)
|
|
{
|
|
if (0 != b)
|
|
{
|
|
next[nextCount++] = i;
|
|
}
|
|
else
|
|
{
|
|
active[activeCount++] = i;
|
|
m_Flags[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
while (activeCount > 0 || nextCount > 0)
|
|
{
|
|
while (activeCount > 0)
|
|
{
|
|
int t = active[activeCount - 1];
|
|
activeCount--;
|
|
if (m_Flags[t] == -side)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
m_Flags[t] = side;
|
|
int3 c = cells[t];
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
int f = m_Neighbors[3 * t + j];
|
|
if (f >= 0 && m_Flags[f] == 0)
|
|
{
|
|
if (0 != m_Constraints[3 * t + j])
|
|
{
|
|
next[nextCount++] = f;
|
|
}
|
|
else
|
|
{
|
|
active[activeCount++] = f;
|
|
m_Flags[f] = side;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int e = 0; e < nextCount; e++)
|
|
active[e] = next[e];
|
|
activeCount = nextCount;
|
|
nextCount = 0;
|
|
side = -side;
|
|
}
|
|
|
|
active.Dispose();
|
|
next.Dispose();
|
|
return cells;
|
|
}
|
|
|
|
internal NativeArray<int3> RemoveExterior(ref int cellCount)
|
|
{
|
|
int constrainedCount = 0;
|
|
NativeArray<int3> constrained = Constrain(ref constrainedCount);
|
|
|
|
NativeArray<int3> cellsOut = new NativeArray<int3>(constrainedCount, m_Allocator);
|
|
cellCount = 0;
|
|
for (int i = 0; i < constrainedCount; ++i)
|
|
{
|
|
if (m_Flags[i] == -1)
|
|
{
|
|
cellsOut[cellCount++] = constrained[i];
|
|
}
|
|
}
|
|
|
|
constrained.Dispose();
|
|
return cellsOut;
|
|
}
|
|
|
|
internal NativeArray<int3> RemoveInterior(int cellCount)
|
|
{
|
|
int constrainedCount = 0;
|
|
NativeArray<int3> constrained = Constrain(ref constrainedCount);
|
|
|
|
NativeArray<int3> cellsOut = new NativeArray<int3>(constrainedCount, m_Allocator);
|
|
cellCount = 0;
|
|
for (int i = 0; i < constrainedCount; ++i)
|
|
{
|
|
if (m_Flags[i] == 1)
|
|
{
|
|
cellsOut[cellCount++] = constrained[i];
|
|
}
|
|
}
|
|
|
|
constrained.Dispose();
|
|
return cellsOut;
|
|
}
|
|
|
|
internal bool Triangulate(NativeArray<float2> points, int pointCount, NativeArray<int2> edges, int edgeCount)
|
|
{
|
|
m_NumEdges = edgeCount;
|
|
m_NumHulls = edgeCount * 2;
|
|
m_NumPoints = pointCount;
|
|
m_CellCount = 0;
|
|
m_Cells = new NativeArray<int3>(ModuleHandle.kMaxTriangleCount, m_Allocator);
|
|
m_ILArray = new NativeArray<int>(m_NumHulls * (m_NumHulls + 1), m_Allocator); // Make room for -1 node.
|
|
m_IUArray = new NativeArray<int>(m_NumHulls * (m_NumHulls + 1), m_Allocator); // Make room for -1 node.
|
|
|
|
NativeArray<UHull> hulls = new NativeArray<UHull>(m_NumPoints * 8, m_Allocator);
|
|
int hullCount = 0;
|
|
|
|
NativeArray<UEvent> events = new NativeArray<UEvent>(m_NumPoints + (m_NumEdges * 2), m_Allocator);
|
|
int eventCount = 0;
|
|
|
|
for (int i = 0; i < m_NumPoints; ++i)
|
|
{
|
|
UEvent evt = new UEvent();
|
|
evt.a = points[i];
|
|
evt.b = new float2();
|
|
evt.idx = i;
|
|
evt.type = (int)UEventType.EVENT_POINT;
|
|
events[eventCount++] = evt;
|
|
}
|
|
|
|
for (int i = 0; i < m_NumEdges; ++i)
|
|
{
|
|
int2 e = edges[i];
|
|
float2 a = points[e.x];
|
|
float2 b = points[e.y];
|
|
if (a.x < b.x)
|
|
{
|
|
UEvent _s = new UEvent();
|
|
_s.a = a;
|
|
_s.b = b;
|
|
_s.idx = i;
|
|
_s.type = (int)UEventType.EVENT_START;
|
|
|
|
UEvent _e = new UEvent();
|
|
_e.a = b;
|
|
_e.b = a;
|
|
_e.idx = i;
|
|
_e.type = (int)UEventType.EVENT_END;
|
|
|
|
events[eventCount++] = _s;
|
|
events[eventCount++] = _e;
|
|
}
|
|
else if (a.x > b.x)
|
|
{
|
|
UEvent _s = new UEvent();
|
|
_s.a = b;
|
|
_s.b = a;
|
|
_s.idx = i;
|
|
_s.type = (int)UEventType.EVENT_START;
|
|
|
|
UEvent _e = new UEvent();
|
|
_e.a = a;
|
|
_e.b = b;
|
|
_e.idx = i;
|
|
_e.type = (int)UEventType.EVENT_END;
|
|
|
|
events[eventCount++] = _s;
|
|
events[eventCount++] = _e;
|
|
}
|
|
}
|
|
|
|
unsafe
|
|
{
|
|
ModuleHandle.InsertionSort<UEvent, TessEventCompare>(
|
|
NativeArrayUnsafeUtility.GetUnsafeBufferPointerWithoutChecks(events), 0, eventCount - 1,
|
|
new TessEventCompare());
|
|
;
|
|
}
|
|
|
|
var hullOp = true;
|
|
float minX = events[0].a.x - (1 + math.abs(events[0].a.x)) * math.pow(2.0f, -16.0f);
|
|
UHull hull;
|
|
hull.a.x = minX;
|
|
hull.a.y = 1;
|
|
hull.b.x = minX;
|
|
hull.b.y = 0;
|
|
hull.idx = -1;
|
|
hull.ilarray = new ArraySlice<int>(m_ILArray, m_NumHulls * m_NumHulls, m_NumHulls); // Last element
|
|
hull.iuarray = new ArraySlice<int>(m_IUArray, m_NumHulls * m_NumHulls, m_NumHulls);
|
|
hull.ilcount = 0;
|
|
hull.iucount = 0;
|
|
hulls[hullCount++] = hull;
|
|
|
|
|
|
for (int i = 0, numEvents = eventCount; i < numEvents; ++i)
|
|
{
|
|
|
|
switch (events[i].type)
|
|
{
|
|
case (int) UEventType.EVENT_POINT:
|
|
{
|
|
hullOp = AddPoint(hulls, hullCount, points, events[i].a, events[i].idx);
|
|
}
|
|
break;
|
|
|
|
case (int) UEventType.EVENT_START:
|
|
{
|
|
hullOp = SplitHulls(hulls, ref hullCount, points, events[i]);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
hullOp = MergeHulls(hulls, ref hullCount, points, events[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!hullOp)
|
|
break;
|
|
}
|
|
|
|
events.Dispose();
|
|
hulls.Dispose();
|
|
return hullOp;
|
|
}
|
|
|
|
internal static bool Tessellate(Allocator allocator, NativeArray<float2> pgPoints, int pgPointCount, NativeArray<int2> pgEdges, int pgEdgeCount, ref NativeArray<float2> outputVertices, ref int vertexCount, ref NativeArray<int> outputIndices, ref int indexCount)
|
|
{
|
|
// Process.
|
|
Tessellator tess = new Tessellator();
|
|
tess.SetAllocator(allocator);
|
|
int maxCount = 0, triCount = 0;
|
|
var valid = true;
|
|
|
|
valid = tess.Triangulate(pgPoints, pgPointCount, pgEdges, pgEdgeCount);
|
|
valid = valid && tess.ApplyDelaunay(pgPoints, pgEdges);
|
|
|
|
if (valid)
|
|
{
|
|
// Output.
|
|
NativeArray<int3> cells = tess.RemoveExterior(ref triCount);
|
|
for (var i = 0; i < triCount; ++i)
|
|
{
|
|
var a = (UInt16)cells[i].x;
|
|
var b = (UInt16)cells[i].y;
|
|
var c = (UInt16)cells[i].z;
|
|
if (a != b && b != c && a != c)
|
|
{
|
|
outputIndices[indexCount++] = a;
|
|
outputIndices[indexCount++] = c;
|
|
outputIndices[indexCount++] = b;
|
|
}
|
|
maxCount = math.max(math.max(math.max(cells[i].x, cells[i].y), cells[i].z), maxCount);
|
|
}
|
|
maxCount = (maxCount != 0) ? (maxCount + 1) : 0;
|
|
for (var i = 0; i < maxCount; ++i)
|
|
outputVertices[vertexCount++] = pgPoints[i];
|
|
cells.Dispose();
|
|
}
|
|
|
|
tess.Cleanup();
|
|
return valid;
|
|
}
|
|
|
|
internal void Cleanup()
|
|
{
|
|
if (m_Edges.IsCreated) m_Edges.Dispose();
|
|
if (m_Stars.IsCreated) m_Stars.Dispose();
|
|
if (m_SPArray.IsCreated) m_SPArray.Dispose();
|
|
if (m_Cells.IsCreated) m_Cells.Dispose();
|
|
if (m_ILArray.IsCreated) m_ILArray.Dispose();
|
|
if (m_IUArray.IsCreated) m_IUArray.Dispose();
|
|
if (m_Flags.IsCreated) m_Flags.Dispose();
|
|
if (m_Neighbors.IsCreated) m_Neighbors.Dispose();
|
|
if (m_Constraints.IsCreated) m_Constraints.Dispose();
|
|
}
|
|
|
|
}
|
|
|
|
}
|