Singularity/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/SpaceTransforms.hlsl
2024-05-06 11:45:45 -07:00

258 lines
7.6 KiB
HLSL

#ifndef UNITY_SPACE_TRANSFORMS_INCLUDED
#define UNITY_SPACE_TRANSFORMS_INCLUDED
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
#pragma warning (disable : 3205) // conversion of larger type to smaller
#endif
// Caution: For HDRP, adding a function in this file requires adding the appropriate #define in PickingSpaceTransforms.hlsl
// Return the PreTranslated ObjectToWorld Matrix (i.e matrix with _WorldSpaceCameraPos apply to it if we use camera relative rendering)
float4x4 GetObjectToWorldMatrix()
{
return UNITY_MATRIX_M;
}
float4x4 GetWorldToObjectMatrix()
{
return UNITY_MATRIX_I_M;
}
float4x4 GetPrevObjectToWorldMatrix()
{
return UNITY_PREV_MATRIX_M;
}
float4x4 GetPrevWorldToObjectMatrix()
{
return UNITY_PREV_MATRIX_I_M;
}
float4x4 GetWorldToViewMatrix()
{
return UNITY_MATRIX_V;
}
// Transform to homogenous clip space
float4x4 GetWorldToHClipMatrix()
{
return UNITY_MATRIX_VP;
}
// Transform to homogenous clip space
float4x4 GetViewToHClipMatrix()
{
return UNITY_MATRIX_P;
}
// This function always return the absolute position in WS
float3 GetAbsolutePositionWS(float3 positionRWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionRWS += _WorldSpaceCameraPos.xyz;
#endif
return positionRWS;
}
// This function return the camera relative position in WS
float3 GetCameraRelativePositionWS(float3 positionWS)
{
#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
positionWS -= _WorldSpaceCameraPos.xyz;
#endif
return positionWS;
}
real GetOddNegativeScale()
{
// FIXME: We should be able to just return unity_WorldTransformParams.w, but it is not
// properly set at the moment, when doing ray-tracing; once this has been fixed in cpp,
// we can revert back to the former implementation.
return unity_WorldTransformParams.w >= 0.0 ? 1.0 : -1.0;
}
float3 TransformObjectToWorld(float3 positionOS)
{
#if defined(SHADER_STAGE_RAY_TRACING)
return mul(ObjectToWorld3x4(), float4(positionOS, 1.0)).xyz;
#else
return mul(GetObjectToWorldMatrix(), float4(positionOS, 1.0)).xyz;
#endif
}
float3 TransformWorldToObject(float3 positionWS)
{
#if defined(SHADER_STAGE_RAY_TRACING)
return mul(WorldToObject3x4(), float4(positionWS, 1.0)).xyz;
#else
return mul(GetWorldToObjectMatrix(), float4(positionWS, 1.0)).xyz;
#endif
}
float3 TransformWorldToView(float3 positionWS)
{
return mul(GetWorldToViewMatrix(), float4(positionWS, 1.0)).xyz;
}
// Transforms position from object space to homogenous space
float4 TransformObjectToHClip(float3 positionOS)
{
// More efficient than computing M*VP matrix product
return mul(GetWorldToHClipMatrix(), mul(GetObjectToWorldMatrix(), float4(positionOS, 1.0)));
}
// Tranforms position from world space to homogenous space
float4 TransformWorldToHClip(float3 positionWS)
{
return mul(GetWorldToHClipMatrix(), float4(positionWS, 1.0));
}
// Tranforms position from view space to homogenous space
float4 TransformWViewToHClip(float3 positionVS)
{
return mul(GetViewToHClipMatrix(), float4(positionVS, 1.0));
}
// Normalize to support uniform scaling
float3 TransformObjectToWorldDir(float3 dirOS, bool doNormalize = true)
{
#ifndef SHADER_STAGE_RAY_TRACING
float3 dirWS = mul((float3x3)GetObjectToWorldMatrix(), dirOS);
#else
float3 dirWS = mul((float3x3)ObjectToWorld3x4(), dirOS);
#endif
if (doNormalize)
return SafeNormalize(dirWS);
return dirWS;
}
// Normalize to support uniform scaling
float3 TransformWorldToObjectDir(float3 dirWS, bool doNormalize = true)
{
#ifndef SHADER_STAGE_RAY_TRACING
float3 dirOS = mul((float3x3)GetWorldToObjectMatrix(), dirWS);
#else
float3 dirOS = mul((float3x3)WorldToObject3x4(), dirWS);
#endif
if (doNormalize)
return normalize(dirOS);
return dirOS;
}
// Tranforms vector from world space to view space
real3 TransformWorldToViewDir(real3 dirWS, bool doNormalize = false)
{
float3 dirVS = mul((real3x3)GetWorldToViewMatrix(), dirWS).xyz;
if (doNormalize)
return normalize(dirVS);
return dirVS;
}
// Tranforms vector from world space to homogenous space
real3 TransformWorldToHClipDir(real3 directionWS, bool doNormalize = false)
{
float3 dirHCS = mul((real3x3)GetWorldToHClipMatrix(), directionWS).xyz;
if (doNormalize)
return normalize(dirHCS);
return dirHCS;
}
// Transforms normal from object to world space
float3 TransformObjectToWorldNormal(float3 normalOS, bool doNormalize = true)
{
#ifdef UNITY_ASSUME_UNIFORM_SCALING
return TransformObjectToWorldDir(normalOS, doNormalize);
#else
// Normal need to be multiply by inverse transpose
float3 normalWS = mul(normalOS, (float3x3)GetWorldToObjectMatrix());
if (doNormalize)
return SafeNormalize(normalWS);
return normalWS;
#endif
}
// Transforms normal from world to object space
float3 TransformWorldToObjectNormal(float3 normalWS, bool doNormalize = true)
{
#ifdef UNITY_ASSUME_UNIFORM_SCALING
return TransformWorldToObjectDir(normalWS, doNormalize);
#else
// Normal need to be multiply by inverse transpose
float3 normalOS = mul(normalWS, (float3x3)GetObjectToWorldMatrix());
if (doNormalize)
return SafeNormalize(normalOS);
return normalOS;
#endif
}
real3x3 CreateTangentToWorld(real3 normal, real3 tangent, real flipSign)
{
// For odd-negative scale transforms we need to flip the sign
real sgn = flipSign * GetOddNegativeScale();
real3 bitangent = cross(normal, tangent) * sgn;
return real3x3(tangent, bitangent, normal);
}
real3 TransformTangentToWorld(float3 dirTS, real3x3 tangentToWorld)
{
// Note matrix is in row major convention with left multiplication as it is build on the fly
return mul(dirTS, tangentToWorld);
}
// This function does the exact inverse of TransformTangentToWorld() and is
// also decribed within comments in mikktspace.h and it follows implicitly
// from the scalar triple product (google it).
real3 TransformWorldToTangent(real3 dirWS, real3x3 tangentToWorld)
{
// Note matrix is in row major convention with left multiplication as it is build on the fly
float3 row0 = tangentToWorld[0];
float3 row1 = tangentToWorld[1];
float3 row2 = tangentToWorld[2];
// these are the columns of the inverse matrix but scaled by the determinant
float3 col0 = cross(row1, row2);
float3 col1 = cross(row2, row0);
float3 col2 = cross(row0, row1);
float determinant = dot(row0, col0);
float sgn = determinant<0.0 ? (-1.0) : 1.0;
// inverse transposed but scaled by determinant
// Will remove transpose part by using matrix as the first arg in the mul() below
// this makes it the exact inverse of what TransformTangentToWorld() does.
real3x3 matTBN_I_T = real3x3(col0, col1, col2);
return SafeNormalize( sgn * mul(matTBN_I_T, dirWS) );
}
real3 TransformTangentToObject(real3 dirTS, real3x3 tangentToWorld)
{
// Note matrix is in row major convention with left multiplication as it is build on the fly
real3 normalWS = TransformTangentToWorld(dirTS, tangentToWorld);
return TransformWorldToObjectNormal(normalWS);
}
real3 TransformObjectToTangent(real3 dirOS, real3x3 tangentToWorld)
{
// Note matrix is in row major convention with left multiplication as it is build on the fly
// don't normalize, as normalWS will be normalized after TransformWorldToTangent
float3 normalWS = TransformObjectToWorldNormal(dirOS, false);
// transform from world to tangent
return TransformWorldToTangent(normalWS, tangentToWorld);
}
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
#pragma warning (enable : 3205) // conversion of larger type to smaller
#endif
#endif