using System.Collections.Generic; using UnityEngine.Experimental.Rendering; using System; using System.Runtime.InteropServices; namespace UnityEngine.Rendering { class AtlasAllocatorDynamic { private class AtlasNodePool { internal AtlasNode[] m_Nodes; Int16 m_Next; Int16 m_FreelistHead; public AtlasNodePool(Int16 capacity) { m_Nodes = new AtlasNode[capacity]; m_Next = 0; m_FreelistHead = -1; } public void Dispose() { Clear(); m_Nodes = null; } public void Clear() { m_Next = 0; m_FreelistHead = -1; } public Int16 AtlasNodeCreate(Int16 parent) { Debug.Assert((m_Next < m_Nodes.Length) || (m_FreelistHead != -1), "Error: AtlasNodePool: Out of memory. Please pre-allocate pool to larger capacity"); if (m_FreelistHead != -1) { Int16 freelistHeadNext = m_Nodes[m_FreelistHead].m_FreelistNext; m_Nodes[m_FreelistHead] = new AtlasNode(m_FreelistHead, parent); Int16 res = m_FreelistHead; m_FreelistHead = freelistHeadNext; return res; } m_Nodes[m_Next] = new AtlasNode(m_Next, parent); return m_Next++; } public void AtlasNodeFree(Int16 index) { Debug.Assert(index >= 0 && index < m_Nodes.Length, "Error: AtlasNodeFree: index out of range."); m_Nodes[index].m_FreelistNext = m_FreelistHead; m_FreelistHead = index; } } [StructLayout(LayoutKind.Explicit, Size = 32)] private struct AtlasNode { private enum AtlasNodeFlags : uint { IsOccupied = 1 << 0 } [FieldOffset(0)] public Int16 m_Self; [FieldOffset(2)] public Int16 m_Parent; [FieldOffset(4)] public Int16 m_LeftChild; [FieldOffset(6)] public Int16 m_RightChild; [FieldOffset(8)] public Int16 m_FreelistNext; [FieldOffset(10)] public UInt16 m_Flags; // [15:12] bytes are padding [FieldOffset(16)] public Vector4 m_Rect; public AtlasNode(Int16 self, Int16 parent) { m_Self = self; m_Parent = parent; m_LeftChild = -1; m_RightChild = -1; m_Flags = 0; m_FreelistNext = -1; m_Rect = Vector4.zero; // x,y is width and height (scale) z,w offset into atlas (bias) } public bool IsOccupied() { return (m_Flags & (UInt16)AtlasNodeFlags.IsOccupied) > 0; } public void SetIsOccupied() { UInt16 isOccupiedMask = (UInt16)AtlasNodeFlags.IsOccupied; m_Flags |= isOccupiedMask; } public void ClearIsOccupied() { UInt16 isOccupiedMask = (UInt16)AtlasNodeFlags.IsOccupied; m_Flags &= (UInt16)~isOccupiedMask; } public bool IsLeafNode() { // Note: Only need to check if m_LeftChild == null, as either both are allocated (split), or none are allocated (leaf). return m_LeftChild == -1; } public Int16 Allocate(AtlasNodePool pool, int width, int height) { if (Mathf.Min(width, height) < 1) { // Degenerate allocation requested. Debug.Assert(false, "Error: Texture2DAtlasDynamic: Attempted to allocate a degenerate region. Please ensure width and height are >= 1"); return -1; } // not a leaf node, try children // TODO: Rather than always going left, then right, we might want to always attempt to allocate in the smaller child, then larger. if (!IsLeafNode()) { Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height); if (node == -1) { node = pool.m_Nodes[m_RightChild].Allocate(pool, width, height); } return node; } // leaf node, check for fit if (IsOccupied()) { return -1; } if (width > m_Rect.x || height > m_Rect.y) { return -1; } // perform the split Debug.Assert(m_LeftChild == -1); Debug.Assert(m_RightChild == -1); m_LeftChild = pool.AtlasNodeCreate(m_Self); m_RightChild = pool.AtlasNodeCreate(m_Self); // Debug.Log("m_LeftChild = " + m_LeftChild); // Debug.Log("m_RightChild = " + m_RightChild); Debug.Assert(m_LeftChild >= 0 && m_LeftChild < pool.m_Nodes.Length); Debug.Assert(m_RightChild >= 0 && m_RightChild < pool.m_Nodes.Length); // Debug.Log("Rect = {" + m_Rect.x + ", " + m_Rect.y + ", " + m_Rect.z + ", " + m_Rect.w + "}"); float deltaX = m_Rect.x - width; float deltaY = m_Rect.y - height; // Debug.Log("deltaX = " + deltaX); // Debug.Log("deltaY = " + deltaY); if (deltaX >= deltaY) { // Debug.Log("Split horizontally"); // +--------+------+ // | | | // | | | // | | | // | | | // +--------+------+ pool.m_Nodes[m_LeftChild].m_Rect.x = width; pool.m_Nodes[m_LeftChild].m_Rect.y = m_Rect.y; pool.m_Nodes[m_LeftChild].m_Rect.z = m_Rect.z; pool.m_Nodes[m_LeftChild].m_Rect.w = m_Rect.w; pool.m_Nodes[m_RightChild].m_Rect.x = deltaX; pool.m_Nodes[m_RightChild].m_Rect.y = m_Rect.y; pool.m_Nodes[m_RightChild].m_Rect.z = m_Rect.z + width; pool.m_Nodes[m_RightChild].m_Rect.w = m_Rect.w; if (deltaY < 1) { pool.m_Nodes[m_LeftChild].SetIsOccupied(); return m_LeftChild; } else { Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height); if (node >= 0) { pool.m_Nodes[node].SetIsOccupied(); } return node; } } else { // Debug.Log("Split vertically."); // +---------------+ // | | // |---------------| // | | // | | // +---------------+ pool.m_Nodes[m_LeftChild].m_Rect.x = m_Rect.x; pool.m_Nodes[m_LeftChild].m_Rect.y = height; pool.m_Nodes[m_LeftChild].m_Rect.z = m_Rect.z; pool.m_Nodes[m_LeftChild].m_Rect.w = m_Rect.w; pool.m_Nodes[m_RightChild].m_Rect.x = m_Rect.x; pool.m_Nodes[m_RightChild].m_Rect.y = deltaY; pool.m_Nodes[m_RightChild].m_Rect.z = m_Rect.z; pool.m_Nodes[m_RightChild].m_Rect.w = m_Rect.w + height; if (deltaX < 1) { pool.m_Nodes[m_LeftChild].SetIsOccupied(); return m_LeftChild; } else { Int16 node = pool.m_Nodes[m_LeftChild].Allocate(pool, width, height); if (node >= 0) { pool.m_Nodes[node].SetIsOccupied(); } return node; } } } public void ReleaseChildren(AtlasNodePool pool) { if (IsLeafNode()) { return; } pool.m_Nodes[m_LeftChild].ReleaseChildren(pool); pool.m_Nodes[m_RightChild].ReleaseChildren(pool); pool.AtlasNodeFree(m_LeftChild); pool.AtlasNodeFree(m_RightChild); m_LeftChild = -1; m_RightChild = -1; } public void ReleaseAndMerge(AtlasNodePool pool) { Int16 n = m_Self; do { pool.m_Nodes[n].ReleaseChildren(pool); pool.m_Nodes[n].ClearIsOccupied(); n = pool.m_Nodes[n].m_Parent; } while (n >= 0 && pool.m_Nodes[n].IsMergeNeeded(pool)); } public bool IsMergeNeeded(AtlasNodePool pool) { return pool.m_Nodes[m_LeftChild].IsLeafNode() && (!pool.m_Nodes[m_LeftChild].IsOccupied()) && pool.m_Nodes[m_RightChild].IsLeafNode() && (!pool.m_Nodes[m_RightChild].IsOccupied()); } } private int m_Width; private int m_Height; private AtlasNodePool m_Pool; private Int16 m_Root; private Dictionary m_NodeFromID; public AtlasAllocatorDynamic(int width, int height, int capacityAllocations) { // In an evenly split binary tree, the nodeCount == leafNodeCount * 2 int capacityNodes = capacityAllocations * 2; Debug.Assert(capacityNodes < (1 << 16), "Error: AtlasAllocatorDynamic: Attempted to allocate a capacity of " + capacityNodes + ", which is greater than our 16-bit indices can support. Please request a capacity <=" + (1 << 16)); m_Pool = new AtlasNodePool((Int16)capacityNodes); m_NodeFromID = new Dictionary(capacityAllocations); Int16 rootParent = -1; m_Root = m_Pool.AtlasNodeCreate(rootParent); m_Pool.m_Nodes[m_Root].m_Rect.Set(width, height, 0, 0); m_Width = width; m_Height = height; // string debug = ""; // DebugStringFromNode(ref debug, m_Root); // Debug.Log("Allocating atlas = " + debug); } public bool Allocate(out Vector4 result, int key, int width, int height) { Int16 node = m_Pool.m_Nodes[m_Root].Allocate(m_Pool, width, height); if (node >= 0) { result = m_Pool.m_Nodes[node].m_Rect; m_NodeFromID.Add(key, node); return true; } else { result = Vector4.zero; return false; } } public void Release(int key) { if (m_NodeFromID.TryGetValue(key, out Int16 node)) { Debug.Assert(node >= 0 && node < m_Pool.m_Nodes.Length); m_Pool.m_Nodes[node].ReleaseAndMerge(m_Pool); m_NodeFromID.Remove(key); return; } } public void Release() { m_Pool.Clear(); m_Root = m_Pool.AtlasNodeCreate(-1); m_Pool.m_Nodes[m_Root].m_Rect.Set(m_Width, m_Height, 0, 0); m_NodeFromID.Clear(); } public string DebugStringFromRoot(int depthMax = -1) { string res = ""; DebugStringFromNode(ref res, m_Root, 0, depthMax); return res; } private void DebugStringFromNode(ref string res, Int16 n, int depthCurrent = 0, int depthMax = -1) { res += "{[" + depthCurrent + "], isOccupied = " + (m_Pool.m_Nodes[n].IsOccupied() ? "true" : "false") + ", self = " + m_Pool.m_Nodes[n].m_Self + ", " + m_Pool.m_Nodes[n].m_Rect.x + "," + m_Pool.m_Nodes[n].m_Rect.y + ", " + m_Pool.m_Nodes[n].m_Rect.z + ", " + m_Pool.m_Nodes[n].m_Rect.w + "}\n"; if (depthMax == -1 || depthCurrent < depthMax) { if (m_Pool.m_Nodes[n].m_LeftChild >= 0) { DebugStringFromNode(ref res, m_Pool.m_Nodes[n].m_LeftChild, depthCurrent + 1, depthMax); } if (m_Pool.m_Nodes[n].m_RightChild >= 0) { DebugStringFromNode(ref res, m_Pool.m_Nodes[n].m_RightChild, depthCurrent + 1, depthMax); } } } } /// /// A generic Atlas texture of 2D textures. /// An atlas texture is a texture collection that collects multiple sub-textures into a single big texture. /// Sub-texture allocation for Texture2DAtlasDynamic is dynamic. /// class Texture2DAtlasDynamic { private RTHandle m_AtlasTexture = null; private bool isAtlasTextureOwner = false; private int m_Width; private int m_Height; private GraphicsFormat m_Format; private AtlasAllocatorDynamic m_AtlasAllocator = null; private Dictionary m_AllocationCache; /// /// Handle to the texture of the atlas. /// public RTHandle AtlasTexture { get { return m_AtlasTexture; } } /// /// Creates a new empty texture atlas. /// public Texture2DAtlasDynamic(int width, int height, int capacity, GraphicsFormat format) { m_Width = width; m_Height = height; m_Format = format; m_AtlasTexture = RTHandles.Alloc( m_Width, m_Height, 1, DepthBits.None, m_Format, FilterMode.Point, TextureWrapMode.Clamp, TextureDimension.Tex2D, false, true, false, false, 1, 0, MSAASamples.None, false, false ); isAtlasTextureOwner = true; m_AtlasAllocator = new AtlasAllocatorDynamic(width, height, capacity); m_AllocationCache = new Dictionary(capacity); } /// /// Creates a new empty texture atlas. Use external atlas texture. /// public Texture2DAtlasDynamic(int width, int height, int capacity, RTHandle atlasTexture) { m_Width = width; m_Height = height; m_Format = atlasTexture.rt.graphicsFormat; m_AtlasTexture = atlasTexture; isAtlasTextureOwner = false; m_AtlasAllocator = new AtlasAllocatorDynamic(width, height, capacity); m_AllocationCache = new Dictionary(capacity); } /// /// Release atlas resources. /// public void Release() { ResetAllocator(); if (isAtlasTextureOwner) { RTHandles.Release(m_AtlasTexture); } } /// /// Clear atlas sub-texture allocations. /// public void ResetAllocator() { m_AtlasAllocator.Release(); m_AllocationCache.Clear(); } /// /// Add a texture into the atlas. /// public bool AddTexture(CommandBuffer cmd, out Vector4 scaleOffset, Texture texture) { int key = texture.GetInstanceID(); if (!m_AllocationCache.TryGetValue(key, out scaleOffset)) { int width = texture.width; int height = texture.height; if (m_AtlasAllocator.Allocate(out scaleOffset, key, width, height)) { scaleOffset.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height)); for (int mipLevel = 0; mipLevel < (texture as Texture2D).mipmapCount; mipLevel++) { cmd.SetRenderTarget(m_AtlasTexture, mipLevel); Blitter.BlitQuad(cmd, texture, new Vector4(1, 1, 0, 0), scaleOffset, mipLevel, false); } m_AllocationCache.Add(key, scaleOffset); return true; } else { return false; } } return true; } /// /// Check if the atlas contains the texture. /// public bool IsCached(out Vector4 scaleOffset, int key) { return m_AllocationCache.TryGetValue(key, out scaleOffset); } /// /// Allocate space from the atlas. /// public bool EnsureTextureSlot(out bool isUploadNeeded, out Vector4 scaleOffset, int key, int width, int height) { isUploadNeeded = false; if (m_AllocationCache.TryGetValue(key, out scaleOffset)) { return true; } // Debug.Log("EnsureTextureSlot Before = " + m_AtlasAllocator.DebugStringFromRoot()); if (!m_AtlasAllocator.Allocate(out scaleOffset, key, width, height)) { return false; } // Debug.Log("EnsureTextureSlot After = " + m_AtlasAllocator.DebugStringFromRoot()); isUploadNeeded = true; scaleOffset.Scale(new Vector4(1.0f / m_Width, 1.0f / m_Height, 1.0f / m_Width, 1.0f / m_Height)); m_AllocationCache.Add(key, scaleOffset); return true; } /// /// Release allocated space from the atlas. /// public void ReleaseTextureSlot(int key) { m_AtlasAllocator.Release(key); m_AllocationCache.Remove(key); } } }