using System;
using System.Diagnostics;
namespace Unity.Burst.Intrinsics
{
public unsafe static partial class X86
{
///
/// SSE intrinsics
///
public static class Sse
{
///
/// Evaluates to true at compile time if SSE intrinsics are supported.
///
public static bool IsSseSupported { get { return false; } }
///
/// Load 128-bits (composed of 4 packed single-precision (32-bit)
/// floating-point elements) from memory into dst.
///
///
/// Burst will always generate unaligned loads.
///
/// Pointer
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 load_ps(void* ptr)
{
return GenericCSharpLoad(ptr);
}
///
/// Load 128-bits (composed of 4 packed single-precision (32-bit)
/// floating-point elements) from memory into dst. mem_addr does
/// not need to be aligned on any particular boundary.
///
/// Pointer
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 loadu_ps(void* ptr)
{
return GenericCSharpLoad(ptr);
}
///
/// Store 128-bits (composed of 4 packed single-precision (32-bit)
/// floating-point elements) from a into memory.
///
///
/// Burst will always generate unaligned stores.
///
/// Pointer
/// Value vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static void store_ps(void* ptr, v128 val)
{
GenericCSharpStore(ptr, val);
}
///
/// Store 128-bits (composed of 4 packed single-precision (32-bit)
/// floating-point elements) from a into memory. mem_addr does not
/// need to be aligned on any particular boundary.
///
/// Pointer
/// Value vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static void storeu_ps(void* ptr, v128 val)
{
GenericCSharpStore(ptr, val);
}
///
/// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point elements) from "a" into memory using a non-temporal memory hint. "mem_addr" must be aligned on a 16-byte boundary or a general-protection exception will be generated.
///
/// Memory address
/// Vector a
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static void stream_ps(void* mem_addr, v128 a)
{
GenericCSharpStore(mem_addr, a);
}
// _mm_cvtsi32_ss
/// Convert the 32-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// 32-bit integer
/// Vector
[DebuggerStepThrough]
public static v128 cvtsi32_ss(v128 a, int b)
{
v128 dst = a;
dst.Float0 = b;
return dst;
}
// _mm_cvtsi64_ss
/// Convert the 64-bit integer "b" to a single-precision (32-bit) floating-point element, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// 64-bit integer
/// Vector
[DebuggerStepThrough]
public static v128 cvtsi64_ss(v128 a, long b)
{
v128 dst = a;
dst.Float0 = b;
return dst;
}
// _mm_add_ss
/// Add the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 add_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = dst.Float0 + b.Float0;
return dst;
}
// _mm_add_ps
/// Add packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 add_ps(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 += b.Float0;
dst.Float1 += b.Float1;
dst.Float2 += b.Float2;
dst.Float3 += b.Float3;
return dst;
}
// _mm_sub_ss
/// Subtract the lower single-precision (32-bit) floating-point element in "b" from the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 sub_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = a.Float0 - b.Float0;
return dst;
}
// _mm_sub_ps
/// Subtract packed single-precision (32-bit) floating-point elements in "b" from packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 sub_ps(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 -= b.Float0;
dst.Float1 -= b.Float1;
dst.Float2 -= b.Float2;
dst.Float3 -= b.Float3;
return dst;
}
// _mm_mul_ss
/// Multiply the lower single-precision (32-bit) floating-point element in "a" and "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 mul_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = a.Float0 * b.Float0;
return dst;
}
// _mm_mul_ps
/// Multiply packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 mul_ps(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 *= b.Float0;
dst.Float1 *= b.Float1;
dst.Float2 *= b.Float2;
dst.Float3 *= b.Float3;
return dst;
}
// _mm_div_ss
/// Divide the lower single-precision (32-bit) floating-point element in "a" by the lower single-precision (32-bit) floating-point element in "b", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 div_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = a.Float0 / b.Float0;
return dst;
}
// _mm_div_ps
/// Divide packed single-precision (32-bit) floating-point elements in "a" by packed elements in "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 div_ps(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 /= b.Float0;
dst.Float1 /= b.Float1;
dst.Float2 /= b.Float2;
dst.Float3 /= b.Float3;
return dst;
}
// _mm_sqrt_ss
/// Compute the square root of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 sqrt_ss(v128 a)
{
v128 dst = a;
dst.Float0 = (float)Math.Sqrt(a.Float0);
return dst;
}
// _mm_sqrt_ps
/// Compute the square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst".
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 sqrt_ps(v128 a)
{
v128 dst = default(v128);
dst.Float0 = (float)Math.Sqrt(a.Float0);
dst.Float1 = (float)Math.Sqrt(a.Float1);
dst.Float2 = (float)Math.Sqrt(a.Float2);
dst.Float3 = (float)Math.Sqrt(a.Float3);
return dst;
}
// _mm_rcp_ss
/// Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12.
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 rcp_ss(v128 a)
{
v128 dst = a;
dst.Float0 = 1.0f / a.Float0;
return dst;
}
// _mm_rcp_ps
/// Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12.
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 rcp_ps(v128 a)
{
v128 dst = default(v128);
dst.Float0 = 1.0f / a.Float0;
dst.Float1 = 1.0f / a.Float1;
dst.Float2 = 1.0f / a.Float2;
dst.Float3 = 1.0f / a.Float3;
return dst;
}
// _mm_rsqrt_ss
/// Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in "a", store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst". The maximum relative error for this approximation is less than 1.5*2^-12.
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 rsqrt_ss(v128 a)
{
v128 dst = a;
dst.Float0 = 1.0f / (float)Math.Sqrt(a.Float0);
return dst;
}
// _mm_rsqrt_ps
/// Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in "a", and store the results in "dst". The maximum relative error for this approximation is less than 1.5*2^-12.
/// Vector a
/// Vector
[DebuggerStepThrough]
public static v128 rsqrt_ps(v128 a)
{
v128 dst = default(v128);
dst.Float0 = 1.0f / (float)Math.Sqrt(a.Float0);
dst.Float1 = 1.0f / (float)Math.Sqrt(a.Float1);
dst.Float2 = 1.0f / (float)Math.Sqrt(a.Float2);
dst.Float3 = 1.0f / (float)Math.Sqrt(a.Float3);
return dst;
}
// _mm_min_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the minimum value in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 min_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = Math.Min(a.Float0, b.Float0);
return dst;
}
// _mm_min_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed minimum values in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 min_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = Math.Min(a.Float0, b.Float0);
dst.Float1 = Math.Min(a.Float1, b.Float1);
dst.Float2 = Math.Min(a.Float2, b.Float2);
dst.Float3 = Math.Min(a.Float3, b.Float3);
return dst;
}
// _mm_max_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b", store the maximum value in the lower element of "dst", and copy the upper element from "a" to the upper element of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 max_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = Math.Max(a.Float0, b.Float0);
return dst;
}
// _mm_max_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b", and store packed maximum values in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 max_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = Math.Max(a.Float0, b.Float0);
dst.Float1 = Math.Max(a.Float1, b.Float1);
dst.Float2 = Math.Max(a.Float2, b.Float2);
dst.Float3 = Math.Max(a.Float3, b.Float3);
return dst;
}
// _mm_and_ps
/// Compute the bitwise AND of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 and_ps(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 &= b.UInt0;
dst.UInt1 &= b.UInt1;
dst.UInt2 &= b.UInt2;
dst.UInt3 &= b.UInt3;
return dst;
}
// _mm_andnot_ps
/// Compute the bitwise NOT of packed single-precision (32-bit) floating-point elements in "a" and then AND with "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 andnot_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = (~a.UInt0) & b.UInt0;
dst.UInt1 = (~a.UInt1) & b.UInt1;
dst.UInt2 = (~a.UInt2) & b.UInt2;
dst.UInt3 = (~a.UInt3) & b.UInt3;
return dst;
}
// _mm_or_ps
/// Compute the bitwise OR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 or_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.UInt0 | b.UInt0;
dst.UInt1 = a.UInt1 | b.UInt1;
dst.UInt2 = a.UInt2 | b.UInt2;
dst.UInt3 = a.UInt3 | b.UInt3;
return dst;
}
// _mm_xor_ps
/// Compute the bitwise XOR of packed single-precision (32-bit) floating-point elements in "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 xor_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.UInt0 ^ b.UInt0;
dst.UInt1 = a.UInt1 ^ b.UInt1;
dst.UInt2 = a.UInt2 ^ b.UInt2;
dst.UInt3 = a.UInt3 ^ b.UInt3;
return dst;
}
// _mm_cmpeq_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for equality, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpeq_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = a.Float0 == b.Float0 ? ~0u : 0;
return dst;
}
// _mm_cmpeq_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for equality, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpeq_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.Float0 == b.Float0 ? ~0u : 0;
dst.UInt1 = a.Float1 == b.Float1 ? ~0u : 0;
dst.UInt2 = a.Float2 == b.Float2 ? ~0u : 0;
dst.UInt3 = a.Float3 == b.Float3 ? ~0u : 0;
return dst;
}
// _mm_cmplt_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for less-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmplt_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = a.Float0 < b.Float0 ? ~0u : 0u;
return dst;
}
// _mm_cmplt_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmplt_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.Float0 < b.Float0 ? ~0u : 0u;
dst.UInt1 = a.Float1 < b.Float1 ? ~0u : 0u;
dst.UInt2 = a.Float2 < b.Float2 ? ~0u : 0u;
dst.UInt3 = a.Float3 < b.Float3 ? ~0u : 0u;
return dst;
}
// _mm_cmple_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmple_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = a.Float0 <= b.Float0 ? ~0u : 0;
return dst;
}
// _mm_cmple_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for less-than-or-equal, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmple_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.Float0 <= b.Float0 ? ~0u : 0u;
dst.UInt1 = a.Float1 <= b.Float1 ? ~0u : 0u;
dst.UInt2 = a.Float2 <= b.Float2 ? ~0u : 0u;
dst.UInt3 = a.Float3 <= b.Float3 ? ~0u : 0u;
return dst;
}
// _mm_cmpgt_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for greater-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpgt_ss(v128 a, v128 b)
{
return cmplt_ss(b, a);
}
// _mm_cmpgt_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for greater-than, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpgt_ps(v128 a, v128 b)
{
return cmplt_ps(b, a);
}
// _mm_cmpge_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for greater-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpge_ss(v128 a, v128 b)
{
return cmple_ss(b, a);
}
// _mm_cmpge_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for greater-than-or-equal, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpge_ps(v128 a, v128 b)
{
return cmple_ps(b, a);
}
// _mm_cmpneq_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpneq_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = a.Float0 != b.Float0 ? ~0u : 0u;
return dst;
}
// _mm_cmpneq_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-equal, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpneq_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = a.Float0 != b.Float0 ? ~0u : 0u;
dst.UInt1 = a.Float1 != b.Float1 ? ~0u : 0u;
dst.UInt2 = a.Float2 != b.Float2 ? ~0u : 0u;
dst.UInt3 = a.Float3 != b.Float3 ? ~0u : 0u;
return dst;
}
// _mm_cmpnlt_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpnlt_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = !(a.Float0 < b.Float0) ? ~0u : 0u;
return dst;
}
// _mm_cmpnlt_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpnlt_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = !(a.Float0 < b.Float0) ? ~0u : 0u;
dst.UInt1 = !(a.Float1 < b.Float1) ? ~0u : 0u;
dst.UInt2 = !(a.Float2 < b.Float2) ? ~0u : 0u;
dst.UInt3 = !(a.Float3 < b.Float3) ? ~0u : 0u;
return dst;
}
// _mm_cmpnle_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpnle_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = !(a.Float0 <= b.Float0) ? ~0u : 0u;
return dst;
}
// _mm_cmpnle_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-less-than-or-equal, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpnle_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = !(a.Float0 <= b.Float0) ? ~0u : 0u;
dst.UInt1 = !(a.Float1 <= b.Float1) ? ~0u : 0u;
dst.UInt2 = !(a.Float2 <= b.Float2) ? ~0u : 0u;
dst.UInt3 = !(a.Float3 <= b.Float3) ? ~0u : 0u;
return dst;
}
// _mm_cmpngt_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpngt_ss(v128 a, v128 b)
{
return cmpnlt_ss(b, a);
}
// _mm_cmpngt_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpngt_ps(v128 a, v128 b)
{
return cmpnlt_ps(b, a);
}
// _mm_cmpnge_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpnge_ss(v128 a, v128 b)
{
return cmpnle_ss(b, a);
}
// _mm_cmpnge_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" for not-greater-than-or-equal, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 cmpnge_ps(v128 a, v128 b)
{
return cmpnle_ps(b, a);
}
// _mm_cmpord_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpord_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = IsNaN(a.UInt0) || IsNaN(b.UInt0) ? 0 : ~0u;
return dst;
}
// _mm_cmpord_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if neither is NaN, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpord_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = IsNaN(a.UInt0) || IsNaN(b.UInt0) ? 0 : ~0u;
dst.UInt1 = IsNaN(a.UInt1) || IsNaN(b.UInt1) ? 0 : ~0u;
dst.UInt2 = IsNaN(a.UInt2) || IsNaN(b.UInt2) ? 0 : ~0u;
dst.UInt3 = IsNaN(a.UInt3) || IsNaN(b.UInt3) ? 0 : ~0u;
return dst;
}
// _mm_cmpunord_ss
/// Compare the lower single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, store the result in the lower element of "dst", and copy the upper 3 packed elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpunord_ss(v128 a, v128 b)
{
v128 dst = a;
dst.UInt0 = IsNaN(a.UInt0) || IsNaN(b.UInt0) ? ~0u : 0;
return dst;
}
// _mm_cmpunord_ps
/// Compare packed single-precision (32-bit) floating-point elements in "a" and "b" to see if either is NaN, and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 cmpunord_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.UInt0 = IsNaN(a.UInt0) || IsNaN(b.UInt0) ? ~0u : 0;
dst.UInt1 = IsNaN(a.UInt1) || IsNaN(b.UInt1) ? ~0u : 0;
dst.UInt2 = IsNaN(a.UInt2) || IsNaN(b.UInt2) ? ~0u : 0;
dst.UInt3 = IsNaN(a.UInt3) || IsNaN(b.UInt3) ? ~0u : 0;
return dst;
}
// _mm_comieq_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comieq_ss(v128 a, v128 b)
{
return a.Float0 == b.Float0 ? 1 : 0;
}
// _mm_comilt_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comilt_ss(v128 a, v128 b)
{
return a.Float0 < b.Float0 ? 1 : 0;
}
// _mm_comile_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comile_ss(v128 a, v128 b)
{
return a.Float0 <= b.Float0 ? 1 : 0;
}
// _mm_comigt_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comigt_ss(v128 a, v128 b)
{
return a.Float0 > b.Float0 ? 1 : 0;
}
// _mm_comige_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comige_ss(v128 a, v128 b)
{
return a.Float0 >= b.Float0 ? 1 : 0;
}
// _mm_comineq_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1).
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int comineq_ss(v128 a, v128 b)
{
return a.Float0 != b.Float0 ? 1 : 0;
}
// _mm_ucomieq_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for equality, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomieq_ss(v128 a, v128 b)
{
return a.Float0 == b.Float0 ? 1 : 0;
}
// _mm_ucomilt_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomilt_ss(v128 a, v128 b)
{
return a.Float0 < b.Float0 ? 1 : 0;
}
// _mm_ucomile_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for less-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomile_ss(v128 a, v128 b)
{
return a.Float0 <= b.Float0 ? 1 : 0;
}
// _mm_ucomigt_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomigt_ss(v128 a, v128 b)
{
return a.Float0 > b.Float0 ? 1 : 0;
}
// _mm_ucomige_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for greater-than-or-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomige_ss(v128 a, v128 b)
{
return a.Float0 >= b.Float0 ? 1 : 0;
}
// _mm_ucomineq_ss
/// Compare the lower single-precision (32-bit) floating-point element in "a" and "b" for not-equal, and return the boolean result (0 or 1). This instruction will not signal an exception for QNaNs.
/// Vector a
/// Vector b
/// Boolean result
[DebuggerStepThrough]
public static int ucomineq_ss(v128 a, v128 b)
{
return a.Float0 != b.Float0 ? 1 : 0;
}
// _mm_cvtss_si32
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst".
/// Vector a
/// Integer
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static int cvtss_si32(v128 a)
{
return cvt_ss2si(a);
}
// _mm_cvt_ss2si
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer, and store the result in "dst".
/// Vector a
/// Integer
[DebuggerStepThrough]
public static int cvt_ss2si(v128 a)
{
return (int)a.Float0;
}
// _mm_cvtss_si64
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer, and store the result in "dst".
/// Vector a
/// 64-bit integer
[DebuggerStepThrough]
public static long cvtss_si64(v128 a)
{
return (long)a.Float0;
}
// _mm_cvtss_f32
/// Copy the lower single-precision (32-bit) floating-point element of "a" to "dst".
/// Vector a
/// 32-bit floating point element
[DebuggerStepThrough]
public static float cvtss_f32(v128 a)
{
return a.Float0;
}
// _mm_cvttss_si32
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst".
/// Vector a
/// 32-bit integer
[DebuggerStepThrough]
public static int cvttss_si32(v128 a)
{
using (var csr = new RoundingScope(MXCSRBits.RoundTowardZero))
{
return (int)a.Float0;
}
}
// _mm_cvtt_ss2si
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 32-bit integer with truncation, and store the result in "dst".
/// Vector a
/// 32-bit integer
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static int cvtt_ss2si(v128 a)
{
return cvttss_si32(a);
}
// _mm_cvttss_si64
/// Convert the lower single-precision (32-bit) floating-point element in "a" to a 64-bit integer with truncation, and store the result in "dst".
/// Vector a
/// 64-bit integer
[DebuggerStepThrough]
public static long cvttss_si64(v128 a)
{
using (var csr = new RoundingScope(MXCSRBits.RoundTowardZero))
{
return (long)a.Float0;
}
}
// _mm_set_ss
/// Copy single-precision (32-bit) floating-point element "a" to the lower element of "dst", and zero the upper 3 elements.
/// Floating point element
/// Vector
[DebuggerStepThrough]
public static v128 set_ss(float a)
{
return new v128(a, 0.0f, 0.0f, 0.0f);
}
// _mm_set1_ps
/// Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst".
/// Floating point element
/// Vector
[DebuggerStepThrough]
public static v128 set1_ps(float a)
{
return new v128(a, a, a, a);
}
// _mm_set_ps1
/// Broadcast single-precision (32-bit) floating-point value "a" to all elements of "dst".
/// Floating point element
/// Vector
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static v128 set_ps1(float a)
{
return set1_ps(a);
}
// _mm_set_ps
/// Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values.
/// Floating point element 3
/// Floating point element 2
/// Floating point element 1
/// Floating point element 0
/// Vector
[DebuggerStepThrough]
public static v128 set_ps(float e3, float e2, float e1, float e0)
{
return new v128(e0, e1, e2, e3);
}
// _mm_setr_ps
/// Set packed single-precision (32-bit) floating-point elements in "dst" with the supplied values in reverse order.
/// Floating point element 3
/// Floating point element 2
/// Floating point element 1
/// Floating point element 0
/// Vector
[DebuggerStepThrough]
public static v128 setr_ps(float e3, float e2, float e1, float e0)
{
return new v128(e3, e2, e1, e0);
}
// _mm_move_ss
/// Move the lower single-precision (32-bit) floating-point element from "b" to the lower element of "dst", and copy the upper 3 elements from "a" to the upper elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 move_ss(v128 a, v128 b)
{
v128 dst = a;
dst.Float0 = b.Float0;
return dst;
}
// _MM_SHUFFLE macro
///
/// Return a shuffle immediate suitable for use with shuffle_ps and similar instructions.
///
/// Integer d
/// Integer c
/// Integer b
/// Integer a
/// Shuffle suitable for use with shuffle_ps
public static int SHUFFLE(int d, int c, int b, int a)
{
return ((a & 3)) | ((b & 3) << 2) | ((c & 3) << 4) | ((d & 3) << 6);
}
// _mm_shuffle_ps
/// Shuffle single-precision (32-bit) floating-point elements in "a" using the control in "imm8", and store the results in "dst".
/// Vector a
/// Vector b
/// Control
/// Vector
[DebuggerStepThrough]
public static v128 shuffle_ps(v128 a, v128 b, int imm8)
{
v128 dst = default(v128);
// Use integers, rather than floats, because of a Mono bug.
uint* aptr = &a.UInt0;
uint* bptr = &b.UInt0;
dst.UInt0 = aptr[(imm8 >> 0) & 3];
dst.UInt1 = aptr[(imm8 >> 2) & 3];
dst.UInt2 = bptr[(imm8 >> 4) & 3];
dst.UInt3 = bptr[(imm8 >> 6) & 3];
return dst;
}
// _mm_unpackhi_ps
/// Unpack and interleave single-precision (32-bit) floating-point elements from the high half "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 unpackhi_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = a.Float2;
dst.Float1 = b.Float2;
dst.Float2 = a.Float3;
dst.Float3 = b.Float3;
return dst;
}
// _mm_unpacklo_ps
/// Unpack and interleave single-precision (32-bit) floating-point elements from the low half of "a" and "b", and store the results in "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 unpacklo_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = a.Float0;
dst.Float1 = b.Float0;
dst.Float2 = a.Float1;
dst.Float3 = b.Float1;
return dst;
}
// _mm_movehl_ps
/// Move the upper 2 single-precision (32-bit) floating-point elements from "b" to the lower 2 elements of "dst", and copy the upper 2 elements from "a" to the upper 2 elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 movehl_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = b.Float2;
dst.Float1 = b.Float3;
dst.Float2 = a.Float2;
dst.Float3 = a.Float3;
return dst;
}
// _mm_movelh_ps
/// Move the lower 2 single-precision (32-bit) floating-point elements from "b" to the upper 2 elements of "dst", and copy the lower 2 elements from "a" to the lower 2 elements of "dst".
/// Vector a
/// Vector b
/// Vector
[DebuggerStepThrough]
public static v128 movelh_ps(v128 a, v128 b)
{
v128 dst = default(v128);
dst.Float0 = a.Float0;
dst.Float1 = a.Float1;
dst.Float2 = b.Float0;
dst.Float3 = b.Float1;
return dst;
}
// _mm_movemask_ps
/// Set each bit of mask "dst" based on the most significant bit of the corresponding packed single-precision (32-bit) floating-point element in "a".
/// Vector a
/// Integer
[DebuggerStepThrough]
public static int movemask_ps(v128 a)
{
int dst = 0;
if ((a.UInt0 & 0x80000000) != 0) dst |= 1;
if ((a.UInt1 & 0x80000000) != 0) dst |= 2;
if ((a.UInt2 & 0x80000000) != 0) dst |= 4;
if ((a.UInt3 & 0x80000000) != 0) dst |= 8;
return dst;
}
///
/// Transposes a 4x4 matrix of single precision floating point values (_MM_TRANSPOSE4_PS).
///
///
/// Arguments row0, row1, row2, and row3 are __m128
/// values whose elements form the corresponding rows
/// of a 4x4 matrix. The matrix transpose is returned
/// in arguments row0, row1, row2, and row3 where row0
/// now holds column 0 of the original matrix, row1 now
/// holds column 1 of the original matrix, etc.
///
/// __m128 value on corresponding row
/// __m128 value on corresponding row
/// __m128 value on corresponding row
/// __m128 value on corresponding row
[DebuggerStepThrough]
[BurstTargetCpu(BurstTargetCpu.X64_SSE2)]
public static void TRANSPOSE4_PS(ref v128 row0, ref v128 row1, ref v128 row2, ref v128 row3)
{
v128 _Tmp3, _Tmp2, _Tmp1, _Tmp0;
_Tmp0 = shuffle_ps((row0), (row1), 0x44);
_Tmp2 = shuffle_ps((row0), (row1), 0xEE);
_Tmp1 = shuffle_ps((row2), (row3), 0x44);
_Tmp3 = shuffle_ps((row2), (row3), 0xEE);
row0 = shuffle_ps(_Tmp0, _Tmp1, 0x88);
row1 = shuffle_ps(_Tmp0, _Tmp1, 0xDD);
row2 = shuffle_ps(_Tmp2, _Tmp3, 0x88);
row3 = shuffle_ps(_Tmp2, _Tmp3, 0xDD);
}
///
/// Return vector of type v128 with all elements set to zero.
///
/// Vector
[DebuggerStepThrough]
public static v128 setzero_ps()
{
return default;
}
///
/// Load unaligned 16-bit integer from memory into the first element of dst.
///
/// Memory address
/// Vector
[DebuggerStepThrough]
public static v128 loadu_si16(void* mem_addr)
{
return new v128(*(short*)mem_addr, 0, 0, 0, 0, 0, 0, 0);
}
///
/// Store 16-bit integer from the first element of a into memory.
/// mem_addr does not need to be aligned on any particular
/// boundary.
///
/// Memory address
/// Vector a
public static void storeu_si16(void* mem_addr, v128 a)
{
*(short*)mem_addr = a.SShort0;
}
///
/// Load unaligned 64-bit integer from memory into the first element of dst.
///
/// Memory address
/// Vector
[DebuggerStepThrough]
public static v128 loadu_si64(void* mem_addr)
{
return new v128(*(long*)mem_addr, 0);
}
///
/// Store 64-bit integer from the first element of a into memory.
/// mem_addr does not need to be aligned on any particular
/// boundary.
///
/// Memory address
/// Vector a
[DebuggerStepThrough]
public static void storeu_si64(void* mem_addr, v128 a)
{
*(long*)mem_addr = a.SLong0;
}
}
}
}