using System;
using System.Collections.Generic;
using Unity.Collections;
using UnityEngine.Experimental.GlobalIllumination;
using UnityEngine.Experimental.Rendering;
using Lightmapping = UnityEngine.Experimental.GlobalIllumination.Lightmapping;
namespace UnityEngine.Rendering.Universal
{
public enum MixedLightingSetup
{
None,
ShadowMask,
Subtractive,
};
///
/// Enumeration that indicates what kind of image scaling is occurring if any
///
internal enum ImageScalingMode
{
/// No scaling
None,
/// Upscaling to a larger image
Upscaling,
/// Downscaling to a smaller image
Downscaling
}
///
/// Enumeration that indicates what kind of upscaling filter is being used
///
internal enum ImageUpscalingFilter
{
/// Bilinear filtering
Linear,
/// Nearest-Neighbor filtering
Point,
/// FidelityFX Super Resolution
FSR
}
public struct RenderingData
{
public CullingResults cullResults;
public CameraData cameraData;
public LightData lightData;
public ShadowData shadowData;
public PostProcessingData postProcessingData;
public bool supportsDynamicBatching;
public PerObjectData perObjectData;
///
/// True if post-processing effect is enabled while rendering the camera stack.
///
public bool postProcessingEnabled;
}
public struct LightData
{
public int mainLightIndex;
public int additionalLightsCount;
public int maxPerObjectAdditionalLightsCount;
public NativeArray visibleLights;
internal NativeArray originalIndices;
public bool shadeAdditionalLightsPerVertex;
public bool supportsMixedLighting;
public bool reflectionProbeBoxProjection;
public bool reflectionProbeBlending;
public bool supportsLightLayers;
///
/// True if additional lights enabled.
///
public bool supportsAdditionalLights;
}
public struct CameraData
{
// Internal camera data as we are not yet sure how to expose View in stereo context.
// We might change this API soon.
Matrix4x4 m_ViewMatrix;
Matrix4x4 m_ProjectionMatrix;
internal void SetViewAndProjectionMatrix(Matrix4x4 viewMatrix, Matrix4x4 projectionMatrix)
{
m_ViewMatrix = viewMatrix;
m_ProjectionMatrix = projectionMatrix;
}
///
/// Returns the camera view matrix.
///
///
public Matrix4x4 GetViewMatrix(int viewIndex = 0)
{
#if ENABLE_VR && ENABLE_XR_MODULE
if (xr.enabled)
return xr.GetViewMatrix(viewIndex);
#endif
return m_ViewMatrix;
}
///
/// Returns the camera projection matrix.
///
///
public Matrix4x4 GetProjectionMatrix(int viewIndex = 0)
{
#if ENABLE_VR && ENABLE_XR_MODULE
if (xr.enabled)
return xr.GetProjMatrix(viewIndex);
#endif
return m_ProjectionMatrix;
}
///
/// Returns the camera GPU projection matrix. This contains platform specific changes to handle y-flip and reverse z.
/// Similar to GL.GetGPUProjectionMatrix but queries URP internal state to know if the pipeline is rendering to render texture.
/// For more info on platform differences regarding camera projection check: https://docs.unity3d.com/Manual/SL-PlatformDifferences.html
///
///
///
public Matrix4x4 GetGPUProjectionMatrix(int viewIndex = 0)
{
return GL.GetGPUProjectionMatrix(GetProjectionMatrix(viewIndex), IsCameraProjectionMatrixFlipped());
}
public Camera camera;
public CameraRenderType renderType;
public RenderTexture targetTexture;
public RenderTextureDescriptor cameraTargetDescriptor;
internal Rect pixelRect;
internal int pixelWidth;
internal int pixelHeight;
internal float aspectRatio;
public float renderScale;
internal ImageScalingMode imageScalingMode;
internal ImageUpscalingFilter upscalingFilter;
internal bool fsrOverrideSharpness;
internal float fsrSharpness;
public bool clearDepth;
public CameraType cameraType;
public bool isDefaultViewport;
public bool isHdrEnabled;
public bool requiresDepthTexture;
public bool requiresOpaqueTexture;
///
/// Returns true if post processing passes require depth texture.
///
public bool postProcessingRequiresDepthTexture;
#if ENABLE_VR && ENABLE_XR_MODULE
public bool xrRendering;
#endif
internal bool requireSrgbConversion
{
get
{
#if ENABLE_VR && ENABLE_XR_MODULE
if (xr.enabled)
return !xr.renderTargetDesc.sRGB && (QualitySettings.activeColorSpace == ColorSpace.Linear);
#endif
return targetTexture == null && Display.main.requiresSrgbBlitToBackbuffer;
}
}
///
/// True if the camera rendering is for the scene window in the editor
///
public bool isSceneViewCamera => cameraType == CameraType.SceneView;
///
/// True if the camera rendering is for the preview window in the editor
///
public bool isPreviewCamera => cameraType == CameraType.Preview;
internal bool isRenderPassSupportedCamera => (cameraType == CameraType.Game || cameraType == CameraType.Reflection);
///
/// True if the camera device projection matrix is flipped. This happens when the pipeline is rendering
/// to a render texture in non OpenGL platforms. If you are doing a custom Blit pass to copy camera textures
/// (_CameraColorTexture, _CameraDepthAttachment) you need to check this flag to know if you should flip the
/// matrix when rendering with for cmd.Draw* and reading from camera textures.
///
public bool IsCameraProjectionMatrixFlipped()
{
// Users only have access to CameraData on URP rendering scope. The current renderer should never be null.
var renderer = ScriptableRenderer.current;
Debug.Assert(renderer != null, "IsCameraProjectionMatrixFlipped is being called outside camera rendering scope.");
if (renderer != null)
{
bool renderingToBackBufferTarget = renderer.cameraColorTarget == BuiltinRenderTextureType.CameraTarget;
#if ENABLE_VR && ENABLE_XR_MODULE
if (xr.enabled)
renderingToBackBufferTarget |= renderer.cameraColorTarget == xr.renderTarget && !xr.renderTargetIsRenderTexture;
#endif
bool renderingToTexture = !renderingToBackBufferTarget || targetTexture != null;
return SystemInfo.graphicsUVStartsAtTop && renderingToTexture;
}
return true;
}
public SortingCriteria defaultOpaqueSortFlags;
internal XRPass xr;
[Obsolete("Please use xr.enabled instead.")]
public bool isStereoEnabled;
public float maxShadowDistance;
public bool postProcessEnabled;
public IEnumerator> captureActions;
public LayerMask volumeLayerMask;
public Transform volumeTrigger;
public bool isStopNaNEnabled;
public bool isDitheringEnabled;
public AntialiasingMode antialiasing;
public AntialiasingQuality antialiasingQuality;
///
/// Returns the current renderer used by this camera.
///
///
public ScriptableRenderer renderer;
///
/// True if this camera is resolving rendering to the final camera render target.
/// When rendering a stack of cameras only the last camera in the stack will resolve to camera target.
///
public bool resolveFinalTarget;
///
/// Camera position in world space.
///
public Vector3 worldSpaceCameraPos;
}
public struct ShadowData
{
public bool supportsMainLightShadows;
[Obsolete("Obsolete, this feature was replaced by new 'ScreenSpaceShadows' renderer feature")]
public bool requiresScreenSpaceShadowResolve;
public int mainLightShadowmapWidth;
public int mainLightShadowmapHeight;
public int mainLightShadowCascadesCount;
public Vector3 mainLightShadowCascadesSplit;
///
/// Main light last cascade shadow fade border.
/// Value represents the width of shadow fade that ranges from 0 to 1.
/// Where value 0 is used for no shadow fade.
///
public float mainLightShadowCascadeBorder;
public bool supportsAdditionalLightShadows;
public int additionalLightsShadowmapWidth;
public int additionalLightsShadowmapHeight;
public bool supportsSoftShadows;
public int shadowmapDepthBufferBits;
public List bias;
public List resolution;
internal bool isKeywordAdditionalLightShadowsEnabled;
internal bool isKeywordSoftShadowsEnabled;
}
// Precomputed tile data.
public struct PreTile
{
// Tile left, right, bottom and top plane equations in view space.
// Normals are pointing out.
public Unity.Mathematics.float4 planeLeft;
public Unity.Mathematics.float4 planeRight;
public Unity.Mathematics.float4 planeBottom;
public Unity.Mathematics.float4 planeTop;
}
// Actual tile data passed to the deferred shaders.
public struct TileData
{
public uint tileID; // 2x 16 bits
public uint listBitMask; // 32 bits
public uint relLightOffset; // 16 bits is enough
public uint unused;
}
// Actual point/spot light data passed to the deferred shaders.
public struct PunctualLightData
{
public Vector3 wsPos;
public float radius; // TODO remove? included in attenuation
public Vector4 color;
public Vector4 attenuation; // .xy are used by DistanceAttenuation - .zw are used by AngleAttenuation (for SpotLights)
public Vector3 spotDirection; // for spotLights
public int flags;
public Vector4 occlusionProbeInfo;
public uint layerMask;
}
internal static class ShaderPropertyId
{
public static readonly int glossyEnvironmentColor = Shader.PropertyToID("_GlossyEnvironmentColor");
public static readonly int subtractiveShadowColor = Shader.PropertyToID("_SubtractiveShadowColor");
public static readonly int glossyEnvironmentCubeMap = Shader.PropertyToID("_GlossyEnvironmentCubeMap");
public static readonly int glossyEnvironmentCubeMapHDR = Shader.PropertyToID("_GlossyEnvironmentCubeMap_HDR");
public static readonly int ambientSkyColor = Shader.PropertyToID("unity_AmbientSky");
public static readonly int ambientEquatorColor = Shader.PropertyToID("unity_AmbientEquator");
public static readonly int ambientGroundColor = Shader.PropertyToID("unity_AmbientGround");
public static readonly int time = Shader.PropertyToID("_Time");
public static readonly int sinTime = Shader.PropertyToID("_SinTime");
public static readonly int cosTime = Shader.PropertyToID("_CosTime");
public static readonly int deltaTime = Shader.PropertyToID("unity_DeltaTime");
public static readonly int timeParameters = Shader.PropertyToID("_TimeParameters");
public static readonly int scaledScreenParams = Shader.PropertyToID("_ScaledScreenParams");
public static readonly int worldSpaceCameraPos = Shader.PropertyToID("_WorldSpaceCameraPos");
public static readonly int screenParams = Shader.PropertyToID("_ScreenParams");
public static readonly int projectionParams = Shader.PropertyToID("_ProjectionParams");
public static readonly int zBufferParams = Shader.PropertyToID("_ZBufferParams");
public static readonly int orthoParams = Shader.PropertyToID("unity_OrthoParams");
public static readonly int globalMipBias = Shader.PropertyToID("_GlobalMipBias");
public static readonly int screenSize = Shader.PropertyToID("_ScreenSize");
public static readonly int viewMatrix = Shader.PropertyToID("unity_MatrixV");
public static readonly int projectionMatrix = Shader.PropertyToID("glstate_matrix_projection");
public static readonly int viewAndProjectionMatrix = Shader.PropertyToID("unity_MatrixVP");
public static readonly int inverseViewMatrix = Shader.PropertyToID("unity_MatrixInvV");
public static readonly int inverseProjectionMatrix = Shader.PropertyToID("unity_MatrixInvP");
public static readonly int inverseViewAndProjectionMatrix = Shader.PropertyToID("unity_MatrixInvVP");
public static readonly int cameraProjectionMatrix = Shader.PropertyToID("unity_CameraProjection");
public static readonly int inverseCameraProjectionMatrix = Shader.PropertyToID("unity_CameraInvProjection");
public static readonly int worldToCameraMatrix = Shader.PropertyToID("unity_WorldToCamera");
public static readonly int cameraToWorldMatrix = Shader.PropertyToID("unity_CameraToWorld");
public static readonly int cameraWorldClipPlanes = Shader.PropertyToID("unity_CameraWorldClipPlanes");
public static readonly int billboardNormal = Shader.PropertyToID("unity_BillboardNormal");
public static readonly int billboardTangent = Shader.PropertyToID("unity_BillboardTangent");
public static readonly int billboardCameraParams = Shader.PropertyToID("unity_BillboardCameraParams");
public static readonly int sourceTex = Shader.PropertyToID("_SourceTex");
public static readonly int scaleBias = Shader.PropertyToID("_ScaleBias");
public static readonly int scaleBiasRt = Shader.PropertyToID("_ScaleBiasRt");
// Required for 2D Unlit Shadergraph master node as it doesn't currently support hidden properties.
public static readonly int rendererColor = Shader.PropertyToID("_RendererColor");
}
public struct PostProcessingData
{
public ColorGradingMode gradingMode;
public int lutSize;
///
/// True if fast approximation functions are used when converting between the sRGB and Linear color spaces, false otherwise.
///
public bool useFastSRGBLinearConversion;
}
public static class ShaderKeywordStrings
{
public const string MainLightShadows = "_MAIN_LIGHT_SHADOWS";
public const string MainLightShadowCascades = "_MAIN_LIGHT_SHADOWS_CASCADE";
public const string MainLightShadowScreen = "_MAIN_LIGHT_SHADOWS_SCREEN";
public const string CastingPunctualLightShadow = "_CASTING_PUNCTUAL_LIGHT_SHADOW"; // This is used during shadow map generation to differentiate between directional and punctual light shadows, as they use different formulas to apply Normal Bias
public const string AdditionalLightsVertex = "_ADDITIONAL_LIGHTS_VERTEX";
public const string AdditionalLightsPixel = "_ADDITIONAL_LIGHTS";
internal const string ClusteredRendering = "_CLUSTERED_RENDERING";
public const string AdditionalLightShadows = "_ADDITIONAL_LIGHT_SHADOWS";
public const string ReflectionProbeBoxProjection = "_REFLECTION_PROBE_BOX_PROJECTION";
public const string ReflectionProbeBlending = "_REFLECTION_PROBE_BLENDING";
public const string SoftShadows = "_SHADOWS_SOFT";
public const string MixedLightingSubtractive = "_MIXED_LIGHTING_SUBTRACTIVE"; // Backward compatibility
public const string LightmapShadowMixing = "LIGHTMAP_SHADOW_MIXING";
public const string ShadowsShadowMask = "SHADOWS_SHADOWMASK";
public const string LightLayers = "_LIGHT_LAYERS";
public const string RenderPassEnabled = "_RENDER_PASS_ENABLED";
public const string BillboardFaceCameraPos = "BILLBOARD_FACE_CAMERA_POS";
public const string LightCookies = "_LIGHT_COOKIES";
public const string DepthNoMsaa = "_DEPTH_NO_MSAA";
public const string DepthMsaa2 = "_DEPTH_MSAA_2";
public const string DepthMsaa4 = "_DEPTH_MSAA_4";
public const string DepthMsaa8 = "_DEPTH_MSAA_8";
public const string LinearToSRGBConversion = "_LINEAR_TO_SRGB_CONVERSION";
internal const string UseFastSRGBLinearConversion = "_USE_FAST_SRGB_LINEAR_CONVERSION";
public const string DBufferMRT1 = "_DBUFFER_MRT1";
public const string DBufferMRT2 = "_DBUFFER_MRT2";
public const string DBufferMRT3 = "_DBUFFER_MRT3";
public const string DecalNormalBlendLow = "_DECAL_NORMAL_BLEND_LOW";
public const string DecalNormalBlendMedium = "_DECAL_NORMAL_BLEND_MEDIUM";
public const string DecalNormalBlendHigh = "_DECAL_NORMAL_BLEND_HIGH";
public const string SmaaLow = "_SMAA_PRESET_LOW";
public const string SmaaMedium = "_SMAA_PRESET_MEDIUM";
public const string SmaaHigh = "_SMAA_PRESET_HIGH";
public const string PaniniGeneric = "_GENERIC";
public const string PaniniUnitDistance = "_UNIT_DISTANCE";
public const string BloomLQ = "_BLOOM_LQ";
public const string BloomHQ = "_BLOOM_HQ";
public const string BloomLQDirt = "_BLOOM_LQ_DIRT";
public const string BloomHQDirt = "_BLOOM_HQ_DIRT";
public const string UseRGBM = "_USE_RGBM";
public const string Distortion = "_DISTORTION";
public const string ChromaticAberration = "_CHROMATIC_ABERRATION";
public const string HDRGrading = "_HDR_GRADING";
public const string TonemapACES = "_TONEMAP_ACES";
public const string TonemapNeutral = "_TONEMAP_NEUTRAL";
public const string FilmGrain = "_FILM_GRAIN";
public const string Fxaa = "_FXAA";
public const string Dithering = "_DITHERING";
public const string ScreenSpaceOcclusion = "_SCREEN_SPACE_OCCLUSION";
public const string PointSampling = "_POINT_SAMPLING";
public const string Rcas = "_RCAS";
public const string Gamma20 = "_GAMMA_20";
public const string HighQualitySampling = "_HIGH_QUALITY_SAMPLING";
public const string DOWNSAMPLING_SIZE_2 = "DOWNSAMPLING_SIZE_2";
public const string DOWNSAMPLING_SIZE_4 = "DOWNSAMPLING_SIZE_4";
public const string DOWNSAMPLING_SIZE_8 = "DOWNSAMPLING_SIZE_8";
public const string DOWNSAMPLING_SIZE_16 = "DOWNSAMPLING_SIZE_16";
public const string _SPOT = "_SPOT";
public const string _DIRECTIONAL = "_DIRECTIONAL";
public const string _POINT = "_POINT";
public const string _DEFERRED_STENCIL = "_DEFERRED_STENCIL";
public const string _DEFERRED_FIRST_LIGHT = "_DEFERRED_FIRST_LIGHT";
public const string _DEFERRED_MAIN_LIGHT = "_DEFERRED_MAIN_LIGHT";
public const string _GBUFFER_NORMALS_OCT = "_GBUFFER_NORMALS_OCT";
public const string _DEFERRED_MIXED_LIGHTING = "_DEFERRED_MIXED_LIGHTING";
public const string LIGHTMAP_ON = "LIGHTMAP_ON";
public const string DYNAMICLIGHTMAP_ON = "DYNAMICLIGHTMAP_ON";
public const string _ALPHATEST_ON = "_ALPHATEST_ON";
public const string DIRLIGHTMAP_COMBINED = "DIRLIGHTMAP_COMBINED";
public const string _DETAIL_MULX2 = "_DETAIL_MULX2";
public const string _DETAIL_SCALED = "_DETAIL_SCALED";
public const string _CLEARCOAT = "_CLEARCOAT";
public const string _CLEARCOATMAP = "_CLEARCOATMAP";
public const string DEBUG_DISPLAY = "DEBUG_DISPLAY";
public const string _EMISSION = "_EMISSION";
public const string _RECEIVE_SHADOWS_OFF = "_RECEIVE_SHADOWS_OFF";
public const string _SURFACE_TYPE_TRANSPARENT = "_SURFACE_TYPE_TRANSPARENT";
public const string _ALPHAPREMULTIPLY_ON = "_ALPHAPREMULTIPLY_ON";
public const string _ALPHAMODULATE_ON = "_ALPHAMODULATE_ON";
public const string _NORMALMAP = "_NORMALMAP";
public const string EDITOR_VISUALIZATION = "EDITOR_VISUALIZATION";
// XR
public const string UseDrawProcedural = "_USE_DRAW_PROCEDURAL";
}
public sealed partial class UniversalRenderPipeline
{
// Holds light direction for directional lights or position for punctual lights.
// When w is set to 1.0, it means it's a punctual light.
static Vector4 k_DefaultLightPosition = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
static Vector4 k_DefaultLightColor = Color.black;
// Default light attenuation is setup in a particular way that it causes
// directional lights to return 1.0 for both distance and angle attenuation
static Vector4 k_DefaultLightAttenuation = new Vector4(0.0f, 1.0f, 0.0f, 1.0f);
static Vector4 k_DefaultLightSpotDirection = new Vector4(0.0f, 0.0f, 1.0f, 0.0f);
static Vector4 k_DefaultLightsProbeChannel = new Vector4(0.0f, 0.0f, 0.0f, 0.0f);
static List m_ShadowBiasData = new List();
static List m_ShadowResolutionData = new List();
///
/// Checks if a camera is a game camera.
///
/// Camera to check state from.
/// true if given camera is a game camera, false otherwise.
public static bool IsGameCamera(Camera camera)
{
if (camera == null)
throw new ArgumentNullException("camera");
return camera.cameraType == CameraType.Game || camera.cameraType == CameraType.VR;
}
///
/// Checks if a camera is rendering in stereo mode.
///
/// Camera to check state from.
/// Returns true if the given camera is rendering in stereo mode, false otherwise.
[Obsolete("Please use CameraData.xr.enabled instead.")]
public static bool IsStereoEnabled(Camera camera)
{
if (camera == null)
throw new ArgumentNullException("camera");
return IsGameCamera(camera) && (camera.stereoTargetEye == StereoTargetEyeMask.Both);
}
///
/// Returns the current render pipeline asset for the current quality setting.
/// If no render pipeline asset is assigned in QualitySettings, then returns the one assigned in GraphicsSettings.
///
public static UniversalRenderPipelineAsset asset
{
get => GraphicsSettings.currentRenderPipeline as UniversalRenderPipelineAsset;
}
///
/// Checks if a camera is rendering in MultiPass stereo mode.
///
/// Camera to check state from.
/// Returns true if the given camera is rendering in multi pass stereo mode, false otherwise.
[Obsolete("Please use CameraData.xr.singlePassEnabled instead.")]
static bool IsMultiPassStereoEnabled(Camera camera)
{
if (camera == null)
throw new ArgumentNullException("camera");
return false;
}
Comparison cameraComparison = (camera1, camera2) => { return (int)camera1.depth - (int)camera2.depth; };
#if UNITY_2021_1_OR_NEWER
void SortCameras(List cameras)
{
if (cameras.Count > 1)
cameras.Sort(cameraComparison);
}
#else
void SortCameras(Camera[] cameras)
{
if (cameras.Length > 1)
Array.Sort(cameras, cameraComparison);
}
#endif
static GraphicsFormat MakeRenderTextureGraphicsFormat(bool isHdrEnabled, bool needsAlpha)
{
if (isHdrEnabled)
{
if (!needsAlpha && RenderingUtils.SupportsGraphicsFormat(GraphicsFormat.B10G11R11_UFloatPack32, FormatUsage.Linear | FormatUsage.Render))
return GraphicsFormat.B10G11R11_UFloatPack32;
if (RenderingUtils.SupportsGraphicsFormat(GraphicsFormat.R16G16B16A16_SFloat, FormatUsage.Linear | FormatUsage.Render))
return GraphicsFormat.R16G16B16A16_SFloat;
return SystemInfo.GetGraphicsFormat(DefaultFormat.HDR); // This might actually be a LDR format on old devices.
}
return SystemInfo.GetGraphicsFormat(DefaultFormat.LDR);
}
// Returns a UNORM based render texture format
// When supported by the device, this function will prefer formats with higher precision, but the same bit-depth
// NOTE: This function does not guarantee that the returned format will contain an alpha channel.
internal static GraphicsFormat MakeUnormRenderTextureGraphicsFormat()
{
if (RenderingUtils.SupportsGraphicsFormat(GraphicsFormat.A2B10G10R10_UNormPack32, FormatUsage.Linear | FormatUsage.Render))
return GraphicsFormat.A2B10G10R10_UNormPack32;
else
return GraphicsFormat.R8G8B8A8_UNorm;
}
static RenderTextureDescriptor CreateRenderTextureDescriptor(Camera camera, float renderScale,
bool isHdrEnabled, int msaaSamples, bool needsAlpha, bool requiresOpaqueTexture)
{
RenderTextureDescriptor desc;
if (camera.targetTexture == null)
{
desc = new RenderTextureDescriptor(camera.pixelWidth, camera.pixelHeight);
desc.width = (int)((float)desc.width * renderScale);
desc.height = (int)((float)desc.height * renderScale);
desc.graphicsFormat = MakeRenderTextureGraphicsFormat(isHdrEnabled, needsAlpha);
desc.depthBufferBits = 32;
desc.msaaSamples = msaaSamples;
desc.sRGB = (QualitySettings.activeColorSpace == ColorSpace.Linear);
}
else
{
desc = camera.targetTexture.descriptor;
desc.width = camera.pixelWidth;
desc.height = camera.pixelHeight;
if (camera.cameraType == CameraType.SceneView && !isHdrEnabled)
{
desc.graphicsFormat = SystemInfo.GetGraphicsFormat(DefaultFormat.LDR);
}
// SystemInfo.SupportsRenderTextureFormat(camera.targetTexture.descriptor.colorFormat)
// will assert on R8_SINT since it isn't a valid value of RenderTextureFormat.
// If this is fixed then we can implement debug statement to the user explaining why some
// RenderTextureFormats available resolves in a black render texture when no warning or error
// is given.
}
// Make sure dimension is non zero
desc.width = Mathf.Max(1, desc.width);
desc.height = Mathf.Max(1, desc.height);
desc.enableRandomWrite = false;
desc.bindMS = false;
desc.useDynamicScale = camera.allowDynamicResolution;
// The way RenderTextures handle MSAA fallback when an unsupported sample count of 2 is requested (falling back to numSamples = 1), differs fom the way
// the fallback is handled when setting up the Vulkan swapchain (rounding up numSamples to 4, if supported). This caused an issue on Mali GPUs which don't support
// 2x MSAA.
// The following code makes sure that on Vulkan the MSAA unsupported fallback behaviour is consistent between RenderTextures and Swapchain.
// TODO: we should review how all backends handle MSAA fallbacks and move these implementation details in engine code.
if (SystemInfo.graphicsDeviceType == GraphicsDeviceType.Vulkan)
{
// if the requested number of samples is 2, and the supported value is 1x, it means that 2x is unsupported on this GPU.
// Then we bump up the requested value to 4.
if (desc.msaaSamples == 2 && SystemInfo.GetRenderTextureSupportedMSAASampleCount(desc) == 1)
desc.msaaSamples = 4;
}
// check that the requested MSAA samples count is supported by the current platform. If it's not supported,
// replace the requested desc.msaaSamples value with the actual value the engine falls back to
desc.msaaSamples = SystemInfo.GetRenderTextureSupportedMSAASampleCount(desc);
// if the target platform doesn't support storing multisampled RTs and we are doing a separate opaque pass, using a Load load action on the subsequent passes
// will result in loading Resolved data, which on some platforms is discarded, resulting in losing the results of the previous passes.
// As a workaround we disable MSAA to make sure that the results of previous passes are stored. (fix for Case 1247423).
if (!SystemInfo.supportsStoreAndResolveAction && requiresOpaqueTexture)
desc.msaaSamples = 1;
return desc;
}
private static Lightmapping.RequestLightsDelegate lightsDelegate = (Light[] requests, NativeArray lightsOutput) =>
{
LightDataGI lightData = new LightDataGI();
#if UNITY_EDITOR
// Always extract lights in the Editor.
for (int i = 0; i < requests.Length; i++)
{
Light light = requests[i];
var additionalLightData = light.GetUniversalAdditionalLightData();
LightmapperUtils.Extract(light, out Cookie cookie);
switch (light.type)
{
case LightType.Directional:
DirectionalLight directionalLight = new DirectionalLight();
LightmapperUtils.Extract(light, ref directionalLight);
if (light.cookie != null)
{
// Size == 1 / Scale
cookie.sizes = additionalLightData.lightCookieSize;
// Offset, Map cookie UV offset to light position on along local axes.
if (additionalLightData.lightCookieOffset != Vector2.zero)
{
var r = light.transform.right * additionalLightData.lightCookieOffset.x;
var u = light.transform.up * additionalLightData.lightCookieOffset.y;
var offset = r + u;
directionalLight.position += offset;
}
}
lightData.Init(ref directionalLight, ref cookie);
break;
case LightType.Point:
PointLight pointLight = new PointLight();
LightmapperUtils.Extract(light, ref pointLight);
lightData.Init(ref pointLight, ref cookie);
break;
case LightType.Spot:
SpotLight spotLight = new SpotLight();
LightmapperUtils.Extract(light, ref spotLight);
spotLight.innerConeAngle = light.innerSpotAngle * Mathf.Deg2Rad;
spotLight.angularFalloff = AngularFalloffType.AnalyticAndInnerAngle;
lightData.Init(ref spotLight, ref cookie);
break;
case LightType.Area:
RectangleLight rectangleLight = new RectangleLight();
LightmapperUtils.Extract(light, ref rectangleLight);
rectangleLight.mode = LightMode.Baked;
lightData.Init(ref rectangleLight);
break;
case LightType.Disc:
DiscLight discLight = new DiscLight();
LightmapperUtils.Extract(light, ref discLight);
discLight.mode = LightMode.Baked;
lightData.Init(ref discLight);
break;
default:
lightData.InitNoBake(light.GetInstanceID());
break;
}
lightData.falloff = FalloffType.InverseSquared;
lightsOutput[i] = lightData;
}
#else
// If Enlighten realtime GI isn't active, we don't extract lights.
if (SupportedRenderingFeatures.active.enlighten == false || ((int)SupportedRenderingFeatures.active.lightmapBakeTypes | (int)LightmapBakeType.Realtime) == 0)
{
for (int i = 0; i < requests.Length; i++)
{
Light light = requests[i];
lightData.InitNoBake(light.GetInstanceID());
lightsOutput[i] = lightData;
}
}
else
{
for (int i = 0; i < requests.Length; i++)
{
Light light = requests[i];
switch (light.type)
{
case LightType.Directional:
DirectionalLight directionalLight = new DirectionalLight();
LightmapperUtils.Extract(light, ref directionalLight);
lightData.Init(ref directionalLight);
break;
case LightType.Point:
PointLight pointLight = new PointLight();
LightmapperUtils.Extract(light, ref pointLight);
lightData.Init(ref pointLight);
break;
case LightType.Spot:
SpotLight spotLight = new SpotLight();
LightmapperUtils.Extract(light, ref spotLight);
spotLight.innerConeAngle = light.innerSpotAngle * Mathf.Deg2Rad;
spotLight.angularFalloff = AngularFalloffType.AnalyticAndInnerAngle;
lightData.Init(ref spotLight);
break;
case LightType.Area:
// Rect area light is baked only in URP.
lightData.InitNoBake(light.GetInstanceID());
break;
case LightType.Disc:
// Disc light is baked only.
lightData.InitNoBake(light.GetInstanceID());
break;
default:
lightData.InitNoBake(light.GetInstanceID());
break;
}
lightData.falloff = FalloffType.InverseSquared;
lightsOutput[i] = lightData;
}
}
#endif
};
// called from DeferredLights.cs too
public static void GetLightAttenuationAndSpotDirection(
LightType lightType, float lightRange, Matrix4x4 lightLocalToWorldMatrix,
float spotAngle, float? innerSpotAngle,
out Vector4 lightAttenuation, out Vector4 lightSpotDir)
{
lightAttenuation = k_DefaultLightAttenuation;
lightSpotDir = k_DefaultLightSpotDirection;
// Directional Light attenuation is initialize so distance attenuation always be 1.0
if (lightType != LightType.Directional)
{
// Light attenuation in universal matches the unity vanilla one.
// attenuation = 1.0 / distanceToLightSqr
// We offer two different smoothing factors.
// The smoothing factors make sure that the light intensity is zero at the light range limit.
// The first smoothing factor is a linear fade starting at 80 % of the light range.
// smoothFactor = (lightRangeSqr - distanceToLightSqr) / (lightRangeSqr - fadeStartDistanceSqr)
// We rewrite smoothFactor to be able to pre compute the constant terms below and apply the smooth factor
// with one MAD instruction
// smoothFactor = distanceSqr * (1.0 / (fadeDistanceSqr - lightRangeSqr)) + (-lightRangeSqr / (fadeDistanceSqr - lightRangeSqr)
// distanceSqr * oneOverFadeRangeSqr + lightRangeSqrOverFadeRangeSqr
// The other smoothing factor matches the one used in the Unity lightmapper but is slower than the linear one.
// smoothFactor = (1.0 - saturate((distanceSqr * 1.0 / lightrangeSqr)^2))^2
float lightRangeSqr = lightRange * lightRange;
float fadeStartDistanceSqr = 0.8f * 0.8f * lightRangeSqr;
float fadeRangeSqr = (fadeStartDistanceSqr - lightRangeSqr);
float oneOverFadeRangeSqr = 1.0f / fadeRangeSqr;
float lightRangeSqrOverFadeRangeSqr = -lightRangeSqr / fadeRangeSqr;
float oneOverLightRangeSqr = 1.0f / Mathf.Max(0.0001f, lightRange * lightRange);
// On untethered devices: Use the faster linear smoothing factor (SHADER_HINT_NICE_QUALITY).
// On other devices: Use the smoothing factor that matches the GI.
lightAttenuation.x = GraphicsSettings.HasShaderDefine(Graphics.activeTier, BuiltinShaderDefine.SHADER_API_MOBILE) || SystemInfo.graphicsDeviceType == GraphicsDeviceType.Switch ? oneOverFadeRangeSqr : oneOverLightRangeSqr;
lightAttenuation.y = lightRangeSqrOverFadeRangeSqr;
}
if (lightType == LightType.Spot)
{
Vector4 dir = lightLocalToWorldMatrix.GetColumn(2);
lightSpotDir = new Vector4(-dir.x, -dir.y, -dir.z, 0.0f);
// Spot Attenuation with a linear falloff can be defined as
// (SdotL - cosOuterAngle) / (cosInnerAngle - cosOuterAngle)
// This can be rewritten as
// invAngleRange = 1.0 / (cosInnerAngle - cosOuterAngle)
// SdotL * invAngleRange + (-cosOuterAngle * invAngleRange)
// If we precompute the terms in a MAD instruction
float cosOuterAngle = Mathf.Cos(Mathf.Deg2Rad * spotAngle * 0.5f);
// We neeed to do a null check for particle lights
// This should be changed in the future
// Particle lights will use an inline function
float cosInnerAngle;
if (innerSpotAngle.HasValue)
cosInnerAngle = Mathf.Cos(innerSpotAngle.Value * Mathf.Deg2Rad * 0.5f);
else
cosInnerAngle = Mathf.Cos((2.0f * Mathf.Atan(Mathf.Tan(spotAngle * 0.5f * Mathf.Deg2Rad) * (64.0f - 18.0f) / 64.0f)) * 0.5f);
float smoothAngleRange = Mathf.Max(0.001f, cosInnerAngle - cosOuterAngle);
float invAngleRange = 1.0f / smoothAngleRange;
float add = -cosOuterAngle * invAngleRange;
lightAttenuation.z = invAngleRange;
lightAttenuation.w = add;
}
}
public static void InitializeLightConstants_Common(NativeArray lights, int lightIndex, out Vector4 lightPos, out Vector4 lightColor, out Vector4 lightAttenuation, out Vector4 lightSpotDir, out Vector4 lightOcclusionProbeChannel)
{
lightPos = k_DefaultLightPosition;
lightColor = k_DefaultLightColor;
lightOcclusionProbeChannel = k_DefaultLightsProbeChannel;
lightAttenuation = k_DefaultLightAttenuation;
lightSpotDir = k_DefaultLightSpotDirection;
// When no lights are visible, main light will be set to -1.
// In this case we initialize it to default values and return
if (lightIndex < 0)
return;
VisibleLight lightData = lights[lightIndex];
if (lightData.lightType == LightType.Directional)
{
Vector4 dir = -lightData.localToWorldMatrix.GetColumn(2);
lightPos = new Vector4(dir.x, dir.y, dir.z, 0.0f);
}
else
{
Vector4 pos = lightData.localToWorldMatrix.GetColumn(3);
lightPos = new Vector4(pos.x, pos.y, pos.z, 1.0f);
}
// VisibleLight.finalColor already returns color in active color space
lightColor = lightData.finalColor;
GetLightAttenuationAndSpotDirection(
lightData.lightType, lightData.range, lightData.localToWorldMatrix,
lightData.spotAngle, lightData.light?.innerSpotAngle,
out lightAttenuation, out lightSpotDir);
Light light = lightData.light;
if (light != null && light.bakingOutput.lightmapBakeType == LightmapBakeType.Mixed &&
0 <= light.bakingOutput.occlusionMaskChannel &&
light.bakingOutput.occlusionMaskChannel < 4)
{
lightOcclusionProbeChannel[light.bakingOutput.occlusionMaskChannel] = 1.0f;
}
}
}
internal enum URPProfileId
{
// CPU
UniversalRenderTotal,
UpdateVolumeFramework,
RenderCameraStack,
// GPU
AdditionalLightsShadow,
ColorGradingLUT,
CopyColor,
CopyDepth,
DepthNormalPrepass,
DepthPrepass,
// DrawObjectsPass
DrawOpaqueObjects,
DrawTransparentObjects,
// RenderObjectsPass
//RenderObjects,
LightCookies,
MainLightShadow,
ResolveShadows,
SSAO,
// PostProcessPass
StopNaNs,
SMAA,
GaussianDepthOfField,
BokehDepthOfField,
MotionBlur,
PaniniProjection,
UberPostProcess,
Bloom,
LensFlareDataDriven,
MotionVectors,
FinalBlit
}
}