// Cellular noise ("Worley noise") in 2D in GLSL. // Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved. // This code is released under the conditions of the MIT license. // See LICENSE file for details. // https://github.com/stegu/webgl-noise using static Unity.Mathematics.math; namespace Unity.Mathematics { public static partial class noise { /// /// 2D Cellular noise ("Worley noise") with standard 3x3 search window for good feature point values. /// /// A point in 2D space. /// Feature points. F1 is in the x component, F2 in the y component. public static float2 cellular(float2 P) { const float K = 0.142857142857f; // 1/7 const float Ko = 0.428571428571f; // 3/7 const float jitter = 1.0f; // Less gives more regular pattern float2 Pi = mod289(floor(P)); float2 Pf = frac(P); float3 oi = float3(-1.0f, 0.0f, 1.0f); float3 of = float3(-0.5f, 0.5f, 1.5f); float3 px = permute(Pi.x + oi); float3 p = permute(px.x + Pi.y + oi); // p11, p12, p13 float3 ox = frac(p * K) - Ko; float3 oy = mod7(floor(p * K)) * K - Ko; float3 dx = Pf.x + 0.5f + jitter * ox; float3 dy = Pf.y - of + jitter * oy; float3 d1 = dx * dx + dy * dy; // d11, d12 and d13, squared p = permute(px.y + Pi.y + oi); // p21, p22, p23 ox = frac(p * K) - Ko; oy = mod7(floor(p * K)) * K - Ko; dx = Pf.x - 0.5f + jitter * ox; dy = Pf.y - of + jitter * oy; float3 d2 = dx * dx + dy * dy; // d21, d22 and d23, squared p = permute(px.z + Pi.y + oi); // p31, p32, p33 ox = frac(p * K) - Ko; oy = mod7(floor(p * K)) * K - Ko; dx = Pf.x - 1.5f + jitter * ox; dy = Pf.y - of + jitter * oy; float3 d3 = dx * dx + dy * dy; // d31, d32 and d33, squared // Sort out the two smallest distances (F1, F2) float3 d1a = min(d1, d2); d2 = max(d1, d2); // Swap to keep candidates for F2 d2 = min(d2, d3); // neither F1 nor F2 are now in d3 d1 = min(d1a, d2); // F1 is now in d1 d2 = max(d1a, d2); // Swap to keep candidates for F2 d1.xy = (d1.x < d1.y) ? d1.xy : d1.yx; // Swap if smaller d1.xz = (d1.x < d1.z) ? d1.xz : d1.zx; // F1 is in d1.x d1.yz = min(d1.yz, d2.yz); // F2 is now not in d2.yz d1.y = min(d1.y, d1.z); // nor in d1.z d1.y = min(d1.y, d2.x); // F2 is in d1.y, we're done. return sqrt(d1.xy); } } }