Singularity/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/ShaderVariablesFunctions.hlsl

396 lines
12 KiB
HLSL
Raw Normal View History

2024-05-06 14:45:45 -04:00
#ifndef UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
#define UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/ShaderVariablesFunctions.deprecated.hlsl"
#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Debug/DebuggingCommon.hlsl"
VertexPositionInputs GetVertexPositionInputs(float3 positionOS)
{
VertexPositionInputs input;
input.positionWS = TransformObjectToWorld(positionOS);
input.positionVS = TransformWorldToView(input.positionWS);
input.positionCS = TransformWorldToHClip(input.positionWS);
float4 ndc = input.positionCS * 0.5f;
input.positionNDC.xy = float2(ndc.x, ndc.y * _ProjectionParams.x) + ndc.w;
input.positionNDC.zw = input.positionCS.zw;
return input;
}
VertexNormalInputs GetVertexNormalInputs(float3 normalOS)
{
VertexNormalInputs tbn;
tbn.tangentWS = real3(1.0, 0.0, 0.0);
tbn.bitangentWS = real3(0.0, 1.0, 0.0);
tbn.normalWS = TransformObjectToWorldNormal(normalOS);
return tbn;
}
VertexNormalInputs GetVertexNormalInputs(float3 normalOS, float4 tangentOS)
{
VertexNormalInputs tbn;
// mikkts space compliant. only normalize when extracting normal at frag.
real sign = real(tangentOS.w) * GetOddNegativeScale();
tbn.normalWS = TransformObjectToWorldNormal(normalOS);
tbn.tangentWS = real3(TransformObjectToWorldDir(tangentOS.xyz));
tbn.bitangentWS = real3(cross(tbn.normalWS, float3(tbn.tangentWS))) * sign;
return tbn;
}
float4 GetScaledScreenParams()
{
return _ScaledScreenParams;
}
// Returns 'true' if the current view performs a perspective projection.
bool IsPerspectiveProjection()
{
return (unity_OrthoParams.w == 0);
}
float3 GetCameraPositionWS()
{
// Currently we do not support Camera Relative Rendering so
// we simply return the _WorldSpaceCameraPos until then
return _WorldSpaceCameraPos;
// We will replace the code above with this one once
// we start supporting Camera Relative Rendering
//#if (SHADEROPTIONS_CAMERA_RELATIVE_RENDERING != 0)
// return float3(0, 0, 0);
//#else
// return _WorldSpaceCameraPos;
//#endif
}
// Could be e.g. the position of a primary camera or a shadow-casting light.
float3 GetCurrentViewPosition()
{
// Currently we do not support Camera Relative Rendering so
// we simply return the _WorldSpaceCameraPos until then
return GetCameraPositionWS();
// We will replace the code above with this one once
// we start supporting Camera Relative Rendering
//#if defined(SHADERPASS) && (SHADERPASS != SHADERPASS_SHADOWS)
// return GetCameraPositionWS();
//#else
// // This is a generic solution.
// // However, for the primary camera, using '_WorldSpaceCameraPos' is better for cache locality,
// // and in case we enable camera-relative rendering, we can statically set the position is 0.
// return UNITY_MATRIX_I_V._14_24_34;
//#endif
}
// Returns the forward (central) direction of the current view in the world space.
float3 GetViewForwardDir()
{
float4x4 viewMat = GetWorldToViewMatrix();
return -viewMat[2].xyz;
}
// Computes the world space view direction (pointing towards the viewer).
float3 GetWorldSpaceViewDir(float3 positionWS)
{
if (IsPerspectiveProjection())
{
// Perspective
return GetCurrentViewPosition() - positionWS;
}
else
{
// Orthographic
return -GetViewForwardDir();
}
}
// Computes the object space view direction (pointing towards the viewer).
half3 GetObjectSpaceNormalizeViewDir(float3 positionOS)
{
if (IsPerspectiveProjection())
{
// Perspective
float3 V = TransformWorldToObject(GetCurrentViewPosition()) - positionOS;
return half3(normalize(V));
}
else
{
// Orthographic
return half3(TransformWorldToObjectNormal(-GetViewForwardDir()));
}
}
half3 GetWorldSpaceNormalizeViewDir(float3 positionWS)
{
if (IsPerspectiveProjection())
{
// Perspective
float3 V = GetCurrentViewPosition() - positionWS;
return half3(normalize(V));
}
else
{
// Orthographic
return half3(-GetViewForwardDir());
}
}
// UNITY_MATRIX_V defines a right-handed view space with the Z axis pointing towards the viewer.
// This function reverses the direction of the Z axis (so that it points forward),
// making the view space coordinate system left-handed.
void GetLeftHandedViewSpaceMatrices(out float4x4 viewMatrix, out float4x4 projMatrix)
{
viewMatrix = UNITY_MATRIX_V;
viewMatrix._31_32_33_34 = -viewMatrix._31_32_33_34;
projMatrix = UNITY_MATRIX_P;
projMatrix._13_23_33_43 = -projMatrix._13_23_33_43;
}
void AlphaDiscard(real alpha, real cutoff, real offset = real(0.0))
{
#ifdef _ALPHATEST_ON
if (IsAlphaDiscardEnabled())
clip(alpha - cutoff + offset);
#endif
}
half OutputAlpha(half outputAlpha, half surfaceType = half(0.0))
{
return surfaceType == 1 ? outputAlpha : half(1.0);
}
// A word on normalization of normals:
// For better quality normals should be normalized before and after
// interpolation.
// 1) In vertex, skinning or blend shapes might vary significantly the lenght of normal.
// 2) In fragment, because even outputting unit-length normals interpolation can make it non-unit.
// 3) In fragment when using normal map, because mikktspace sets up non orthonormal basis.
// However we will try to balance performance vs quality here as also let users configure that as
// shader quality tiers.
// Low Quality Tier: Don't normalize per-vertex.
// Medium Quality Tier: Always normalize per-vertex.
// High Quality Tier: Always normalize per-vertex.
//
// Always normalize per-pixel.
// Too many bug like lighting quality issues otherwise.
half3 NormalizeNormalPerVertex(half3 normalWS)
{
#if defined(SHADER_QUALITY_LOW) && defined(_NORMALMAP)
return normalWS;
#else
return normalize(normalWS);
#endif
}
float3 NormalizeNormalPerVertex(float3 normalWS)
{
#if defined(SHADER_QUALITY_LOW) && defined(_NORMALMAP)
return normalWS;
#else
return normalize(normalWS);
#endif
}
half3 NormalizeNormalPerPixel(half3 normalWS)
{
// With XYZ normal map encoding we sporadically sample normals with near-zero-length causing Inf/NaN
#if defined(UNITY_NO_DXT5nm) && defined(_NORMALMAP)
return SafeNormalize(normalWS);
#else
return normalize(normalWS);
#endif
}
float3 NormalizeNormalPerPixel(float3 normalWS)
{
#if defined(UNITY_NO_DXT5nm) && defined(_NORMALMAP)
return SafeNormalize(normalWS);
#else
return normalize(normalWS);
#endif
}
real ComputeFogFactorZ0ToFar(float z)
{
#if defined(FOG_LINEAR)
// factor = (end-z)/(end-start) = z * (-1/(end-start)) + (end/(end-start))
float fogFactor = saturate(z * unity_FogParams.z + unity_FogParams.w);
return real(fogFactor);
#elif defined(FOG_EXP) || defined(FOG_EXP2)
// factor = exp(-(density*z)^2)
// -density * z computed at vertex
return real(unity_FogParams.x * z);
#else
return real(0.0);
#endif
}
real ComputeFogFactor(float zPositionCS)
{
float clipZ_0Far = UNITY_Z_0_FAR_FROM_CLIPSPACE(zPositionCS);
return ComputeFogFactorZ0ToFar(clipZ_0Far);
}
half ComputeFogIntensity(half fogFactor)
{
half fogIntensity = half(0.0);
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
#if defined(FOG_EXP)
// factor = exp(-density*z)
// fogFactor = density*z compute at vertex
fogIntensity = saturate(exp2(-fogFactor));
#elif defined(FOG_EXP2)
// factor = exp(-(density*z)^2)
// fogFactor = density*z compute at vertex
fogIntensity = saturate(exp2(-fogFactor * fogFactor));
#elif defined(FOG_LINEAR)
fogIntensity = fogFactor;
#endif
#endif
return fogIntensity;
}
// Force enable fog fragment shader evaluation
#define _FOG_FRAGMENT 1
real InitializeInputDataFog(float4 positionWS, real vertFogFactor)
{
real fogFactor = 0.0;
#if defined(_FOG_FRAGMENT)
#if (defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2))
// Compiler eliminates unused math --> matrix.column_z * vec
float viewZ = -(mul(UNITY_MATRIX_V, positionWS).z);
// View Z is 0 at camera pos, remap 0 to near plane.
float nearToFarZ = max(viewZ - _ProjectionParams.y, 0);
fogFactor = ComputeFogFactorZ0ToFar(nearToFarZ);
#endif
#else
fogFactor = vertFogFactor;
#endif
return fogFactor;
}
float ComputeFogIntensity(float fogFactor)
{
float fogIntensity = 0.0;
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
#if defined(FOG_EXP)
// factor = exp(-density*z)
// fogFactor = density*z compute at vertex
fogIntensity = saturate(exp2(-fogFactor));
#elif defined(FOG_EXP2)
// factor = exp(-(density*z)^2)
// fogFactor = density*z compute at vertex
fogIntensity = saturate(exp2(-fogFactor * fogFactor));
#elif defined(FOG_LINEAR)
fogIntensity = fogFactor;
#endif
#endif
return fogIntensity;
}
half3 MixFogColor(half3 fragColor, half3 fogColor, half fogFactor)
{
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
half fogIntensity = ComputeFogIntensity(fogFactor);
fragColor = lerp(fogColor, fragColor, fogIntensity);
#endif
return fragColor;
}
float3 MixFogColor(float3 fragColor, float3 fogColor, float fogFactor)
{
#if defined(FOG_LINEAR) || defined(FOG_EXP) || defined(FOG_EXP2)
if (IsFogEnabled())
{
float fogIntensity = ComputeFogIntensity(fogFactor);
fragColor = lerp(fogColor, fragColor, fogIntensity);
}
#endif
return fragColor;
}
half3 MixFog(half3 fragColor, half fogFactor)
{
return MixFogColor(fragColor, unity_FogColor.rgb, fogFactor);
}
float3 MixFog(float3 fragColor, float fogFactor)
{
return MixFogColor(fragColor, unity_FogColor.rgb, fogFactor);
}
// Linear depth buffer value between [0, 1] or [1, 0] to eye depth value between [near, far]
half LinearDepthToEyeDepth(half rawDepth)
{
#if UNITY_REVERSED_Z
return half(_ProjectionParams.z - (_ProjectionParams.z - _ProjectionParams.y) * rawDepth);
#else
return half(_ProjectionParams.y + (_ProjectionParams.z - _ProjectionParams.y) * rawDepth);
#endif
}
float LinearDepthToEyeDepth(float rawDepth)
{
#if UNITY_REVERSED_Z
return _ProjectionParams.z - (_ProjectionParams.z - _ProjectionParams.y) * rawDepth;
#else
return _ProjectionParams.y + (_ProjectionParams.z - _ProjectionParams.y) * rawDepth;
#endif
}
void TransformScreenUV(inout float2 uv, float screenHeight)
{
#if UNITY_UV_STARTS_AT_TOP
uv.y = screenHeight - (uv.y * _ScaleBiasRt.x + _ScaleBiasRt.y * screenHeight);
#endif
}
void TransformScreenUV(inout float2 uv)
{
#if UNITY_UV_STARTS_AT_TOP
TransformScreenUV(uv, GetScaledScreenParams().y);
#endif
}
void TransformNormalizedScreenUV(inout float2 uv)
{
#if UNITY_UV_STARTS_AT_TOP
TransformScreenUV(uv, 1.0);
#endif
}
float2 GetNormalizedScreenSpaceUV(float2 positionCS)
{
float2 normalizedScreenSpaceUV = positionCS.xy * rcp(GetScaledScreenParams().xy);
TransformNormalizedScreenUV(normalizedScreenSpaceUV);
return normalizedScreenSpaceUV;
}
float2 GetNormalizedScreenSpaceUV(float4 positionCS)
{
return GetNormalizedScreenSpaceUV(positionCS.xy);
}
#if defined(UNITY_SINGLE_PASS_STEREO)
float2 TransformStereoScreenSpaceTex(float2 uv, float w)
{
// TODO: RVS support can be added here, if Universal decides to support it
float4 scaleOffset = unity_StereoScaleOffset[unity_StereoEyeIndex];
return uv.xy * scaleOffset.xy + scaleOffset.zw * w;
}
float2 UnityStereoTransformScreenSpaceTex(float2 uv)
{
return TransformStereoScreenSpaceTex(saturate(uv), 1.0);
}
#else
#define UnityStereoTransformScreenSpaceTex(uv) uv
#endif // defined(UNITY_SINGLE_PASS_STEREO)
#endif // UNITY_SHADER_VARIABLES_FUNCTIONS_INCLUDED