Singularity/Library/PackageCache/com.unity.render-pipelines..../Runtime/Debugging/DebugShapes.cs

517 lines
17 KiB
C#
Raw Normal View History

2024-05-06 14:45:45 -04:00
namespace UnityEngine.Rendering
{
/// <summary>Debug class containing several debug shapes for debugging</summary>
public partial class DebugShapes
{
// Singleton
static DebugShapes s_Instance = null;
/// <summary>Singleton instance</summary>
static public DebugShapes instance
{
get
{
if (s_Instance == null)
{
s_Instance = new DebugShapes();
}
return s_Instance;
}
}
Mesh m_sphereMesh = null;
Mesh m_boxMesh = null;
Mesh m_coneMesh = null;
Mesh m_pyramidMesh = null;
// This code has been grabbed from http://wiki.unity3d.com/index.php/ProceduralPrimitives
void BuildSphere(ref Mesh outputMesh, float radius, uint longSubdiv, uint latSubdiv)
{
// Make sure it is empty before pushing anything to it
outputMesh.Clear();
// Build the vertices array
Vector3[] vertices = new Vector3[(longSubdiv + 1) * latSubdiv + 2];
float _pi = Mathf.PI;
float _2pi = _pi * 2f;
vertices[0] = Vector3.up * radius;
for (int lat = 0; lat < latSubdiv; lat++)
{
float a1 = _pi * (float)(lat + 1) / (latSubdiv + 1);
float sin1 = Mathf.Sin(a1);
float cos1 = Mathf.Cos(a1);
for (int lon = 0; lon <= longSubdiv; lon++)
{
float a2 = _2pi * (float)(lon == longSubdiv ? 0 : lon) / longSubdiv;
float sin2 = Mathf.Sin(a2);
float cos2 = Mathf.Cos(a2);
vertices[lon + lat * (longSubdiv + 1) + 1] = new Vector3(sin1 * cos2, cos1, sin1 * sin2) * radius;
}
}
vertices[vertices.Length - 1] = Vector3.up * -radius;
// Build the normals array
Vector3[] normals = new Vector3[vertices.Length];
for (int n = 0; n < vertices.Length; n++)
{
normals[n] = vertices[n].normalized;
}
// Build the UV array
Vector2[] uvs = new Vector2[vertices.Length];
uvs[0] = Vector2.up;
uvs[uvs.Length - 1] = Vector2.zero;
for (int lat = 0; lat < latSubdiv; lat++)
{
for (int lon = 0; lon <= longSubdiv; lon++)
{
uvs[lon + lat * (longSubdiv + 1) + 1] = new Vector2((float)lon / longSubdiv, 1f - (float)(lat + 1) / (latSubdiv + 1));
}
}
// Build the index array
int nbFaces = vertices.Length;
int nbTriangles = nbFaces * 2;
int nbIndexes = nbTriangles * 3;
int[] triangles = new int[nbIndexes];
// Top Cap
int i = 0;
for (int lon = 0; lon < longSubdiv; lon++)
{
triangles[i++] = lon + 2;
triangles[i++] = lon + 1;
triangles[i++] = 0;
}
//Middle
for (uint lat = 0; lat < latSubdiv - 1; lat++)
{
for (uint lon = 0; lon < longSubdiv; lon++)
{
uint current = lon + lat * (longSubdiv + 1) + 1;
uint next = current + longSubdiv + 1;
triangles[i++] = (int)current;
triangles[i++] = (int)current + 1;
triangles[i++] = (int)next + 1;
triangles[i++] = (int)current;
triangles[i++] = (int)next + 1;
triangles[i++] = (int)next;
}
}
// Bottom Cap
for (int lon = 0; lon < longSubdiv; lon++)
{
triangles[i++] = vertices.Length - 1;
triangles[i++] = vertices.Length - (lon + 2) - 1;
triangles[i++] = vertices.Length - (lon + 1) - 1;
}
// Assign them to
outputMesh.vertices = vertices;
outputMesh.normals = normals;
outputMesh.uv = uvs;
outputMesh.triangles = triangles;
outputMesh.RecalculateBounds();
}
void BuildBox(ref Mesh outputMesh, float length, float width, float height)
{
outputMesh.Clear();
Vector3 p0 = new Vector3(-length * .5f, -width * .5f, height * .5f);
Vector3 p1 = new Vector3(length * .5f, -width * .5f, height * .5f);
Vector3 p2 = new Vector3(length * .5f, -width * .5f, -height * .5f);
Vector3 p3 = new Vector3(-length * .5f, -width * .5f, -height * .5f);
Vector3 p4 = new Vector3(-length * .5f, width * .5f, height * .5f);
Vector3 p5 = new Vector3(length * .5f, width * .5f, height * .5f);
Vector3 p6 = new Vector3(length * .5f, width * .5f, -height * .5f);
Vector3 p7 = new Vector3(-length * .5f, width * .5f, -height * .5f);
Vector3[] vertices = new Vector3[]
{
// Bottom
p0, p1, p2, p3,
// Left
p7, p4, p0, p3,
// Front
p4, p5, p1, p0,
// Back
p6, p7, p3, p2,
// Right
p5, p6, p2, p1,
// Top
p7, p6, p5, p4
};
Vector3 up = Vector3.up;
Vector3 down = Vector3.down;
Vector3 front = Vector3.forward;
Vector3 back = Vector3.back;
Vector3 left = Vector3.left;
Vector3 right = Vector3.right;
Vector3[] normales = new Vector3[]
{
// Bottom
down, down, down, down,
// Left
left, left, left, left,
// Front
front, front, front, front,
// Back
back, back, back, back,
// Right
right, right, right, right,
// Top
up, up, up, up
};
Vector2 _00 = new Vector2(0f, 0f);
Vector2 _10 = new Vector2(1f, 0f);
Vector2 _01 = new Vector2(0f, 1f);
Vector2 _11 = new Vector2(1f, 1f);
Vector2[] uvs = new Vector2[]
{
// Bottom
_11, _01, _00, _10,
// Left
_11, _01, _00, _10,
// Front
_11, _01, _00, _10,
// Back
_11, _01, _00, _10,
// Right
_11, _01, _00, _10,
// Top
_11, _01, _00, _10,
};
int[] triangles = new int[]
{
// Bottom
3, 1, 0,
3, 2, 1,
// Left
3 + 4 * 1, 1 + 4 * 1, 0 + 4 * 1,
3 + 4 * 1, 2 + 4 * 1, 1 + 4 * 1,
// Front
3 + 4 * 2, 1 + 4 * 2, 0 + 4 * 2,
3 + 4 * 2, 2 + 4 * 2, 1 + 4 * 2,
// Back
3 + 4 * 3, 1 + 4 * 3, 0 + 4 * 3,
3 + 4 * 3, 2 + 4 * 3, 1 + 4 * 3,
// Right
3 + 4 * 4, 1 + 4 * 4, 0 + 4 * 4,
3 + 4 * 4, 2 + 4 * 4, 1 + 4 * 4,
// Top
3 + 4 * 5, 1 + 4 * 5, 0 + 4 * 5,
3 + 4 * 5, 2 + 4 * 5, 1 + 4 * 5,
};
outputMesh.vertices = vertices;
outputMesh.normals = normales;
outputMesh.uv = uvs;
outputMesh.triangles = triangles;
outputMesh.RecalculateBounds();
}
void BuildCone(ref Mesh outputMesh, float height, float topRadius, float bottomRadius, int nbSides)
{
outputMesh.Clear();
int nbVerticesCap = nbSides + 1;
// bottom + top + sides
Vector3[] vertices = new Vector3[nbVerticesCap + nbVerticesCap + nbSides * 2 + 2];
int vert = 0;
float _2pi = Mathf.PI * 2f;
// Bottom cap
vertices[vert++] = new Vector3(0f, 0f, 0f);
while (vert <= nbSides)
{
float rad = (float)vert / nbSides * _2pi;
vertices[vert] = new Vector3(Mathf.Sin(rad) * bottomRadius, Mathf.Cos(rad) * bottomRadius, 0f);
vert++;
}
// Top cap
vertices[vert++] = new Vector3(0f, 0f, height);
while (vert <= nbSides * 2 + 1)
{
float rad = (float)(vert - nbSides - 1) / nbSides * _2pi;
vertices[vert] = new Vector3(Mathf.Sin(rad) * topRadius, Mathf.Cos(rad) * topRadius, height);
vert++;
}
// Sides
int v = 0;
while (vert <= vertices.Length - 4)
{
float rad = (float)v / nbSides * _2pi;
vertices[vert] = new Vector3(Mathf.Sin(rad) * topRadius, Mathf.Cos(rad) * topRadius, height);
vertices[vert + 1] = new Vector3(Mathf.Sin(rad) * bottomRadius, Mathf.Cos(rad) * bottomRadius, 0);
vert += 2;
v++;
}
vertices[vert] = vertices[nbSides * 2 + 2];
vertices[vert + 1] = vertices[nbSides * 2 + 3];
// bottom + top + sides
Vector3[] normales = new Vector3[vertices.Length];
vert = 0;
// Bottom cap
while (vert <= nbSides)
{
normales[vert++] = new Vector3(0, 0, -1);
}
// Top cap
while (vert <= nbSides * 2 + 1)
{
normales[vert++] = new Vector3(0, 0, 1);
}
// Sides
v = 0;
while (vert <= vertices.Length - 4)
{
float rad = (float)v / nbSides * _2pi;
float cos = Mathf.Cos(rad);
float sin = Mathf.Sin(rad);
normales[vert] = new Vector3(sin, cos, 0f);
normales[vert + 1] = normales[vert];
vert += 2;
v++;
}
normales[vert] = normales[nbSides * 2 + 2];
normales[vert + 1] = normales[nbSides * 2 + 3];
Vector2[] uvs = new Vector2[vertices.Length];
// Bottom cap
int u = 0;
uvs[u++] = new Vector2(0.5f, 0.5f);
while (u <= nbSides)
{
float rad = (float)u / nbSides * _2pi;
uvs[u] = new Vector2(Mathf.Cos(rad) * .5f + .5f, Mathf.Sin(rad) * .5f + .5f);
u++;
}
// Top cap
uvs[u++] = new Vector2(0.5f, 0.5f);
while (u <= nbSides * 2 + 1)
{
float rad = (float)u / nbSides * _2pi;
uvs[u] = new Vector2(Mathf.Cos(rad) * .5f + .5f, Mathf.Sin(rad) * .5f + .5f);
u++;
}
// Sides
int u_sides = 0;
while (u <= uvs.Length - 4)
{
float t = (float)u_sides / nbSides;
uvs[u] = new Vector3(t, 1f);
uvs[u + 1] = new Vector3(t, 0f);
u += 2;
u_sides++;
}
uvs[u] = new Vector2(1f, 1f);
uvs[u + 1] = new Vector2(1f, 0f);
int nbTriangles = nbSides + nbSides + nbSides * 2;
int[] triangles = new int[nbTriangles * 3 + 3];
// Bottom cap
int tri = 0;
int i = 0;
while (tri < nbSides - 1)
{
triangles[i] = 0;
triangles[i + 1] = tri + 1;
triangles[i + 2] = tri + 2;
tri++;
i += 3;
}
triangles[i] = 0;
triangles[i + 1] = tri + 1;
triangles[i + 2] = 1;
tri++;
i += 3;
// Top cap
//tri++;
while (tri < nbSides * 2)
{
triangles[i] = tri + 2;
triangles[i + 1] = tri + 1;
triangles[i + 2] = nbVerticesCap;
tri++;
i += 3;
}
triangles[i] = nbVerticesCap + 1;
triangles[i + 1] = tri + 1;
triangles[i + 2] = nbVerticesCap;
tri++;
i += 3;
tri++;
// Sides
while (tri <= nbTriangles)
{
triangles[i] = tri + 2;
triangles[i + 1] = tri + 1;
triangles[i + 2] = tri + 0;
tri++;
i += 3;
triangles[i] = tri + 1;
triangles[i + 1] = tri + 2;
triangles[i + 2] = tri + 0;
tri++;
i += 3;
}
outputMesh.vertices = vertices;
outputMesh.normals = normales;
outputMesh.uv = uvs;
outputMesh.triangles = triangles;
outputMesh.RecalculateBounds();
}
void BuildPyramid(ref Mesh outputMesh, float width, float height, float depth)
{
outputMesh.Clear();
// Allocate the buffer
Vector3[] vertices = new Vector3[16];
// Top Face
vertices[0] = new Vector3(0f, 0f, 0f);
vertices[1] = new Vector3(-width / 2.0f, height / 2.0f, depth);
vertices[2] = new Vector3(width / 2.0f, height / 2.0f, depth);
// Left Face
vertices[3] = new Vector3(0f, 0f, 0f);
vertices[4] = new Vector3(width / 2.0f, height / 2.0f, depth);
vertices[5] = new Vector3(width / 2.0f, -height / 2.0f, depth);
// Bottom Face
vertices[6] = new Vector3(0f, 0f, 0f);
vertices[7] = new Vector3(width / 2.0f, -height / 2.0f, depth);
vertices[8] = new Vector3(-width / 2.0f, -height / 2.0f, depth);
// Right Face
vertices[9] = new Vector3(0f, 0f, 0f);
vertices[10] = new Vector3(-width / 2.0f, -height / 2.0f, depth);
vertices[11] = new Vector3(-width / 2.0f, height / 2.0f, depth);
// Cap
vertices[12] = new Vector3(-width / 2.0f, height / 2.0f, depth);
vertices[13] = new Vector3(-width / 2.0f, -height / 2.0f, depth);
vertices[14] = new Vector3(width / 2.0f, -height / 2.0f, depth);
vertices[15] = new Vector3(width / 2.0f, height / 2.0f, depth);
// TODO: support the uv/normals
Vector3[] normals = new Vector3[vertices.Length];
Vector2[] uvs = new Vector2[vertices.Length];
// The indexes for the side part is simple
int[] triangles = new int[18];
for (int idx = 0; idx < 12; ++idx)
{
triangles[idx] = idx;
}
// Cap indexes
triangles[12] = 12;
triangles[13] = 13;
triangles[14] = 14;
triangles[15] = 12;
triangles[16] = 14;
triangles[17] = 15;
outputMesh.vertices = vertices;
outputMesh.normals = normals;
outputMesh.uv = uvs;
outputMesh.triangles = triangles;
outputMesh.RecalculateBounds();
}
void BuildShapes()
{
m_sphereMesh = new Mesh();
BuildSphere(ref m_sphereMesh, 1.0f, 24, 16);
m_boxMesh = new Mesh();
BuildBox(ref m_boxMesh, 1.0f, 1.0f, 1.0f);
m_coneMesh = new Mesh();
BuildCone(ref m_coneMesh, 1.0f, 1.0f, 0.0f, 16);
m_pyramidMesh = new Mesh();
BuildPyramid(ref m_pyramidMesh, 1.0f, 1.0f, 1.0f);
}
void RebuildResources()
{
if (m_sphereMesh == null || m_boxMesh == null || m_coneMesh == null || m_pyramidMesh == null)
{
BuildShapes();
}
}
/// <summary>Get a Sphere Mesh</summary>
/// <returns>A Sphere Mesh</returns>
public Mesh RequestSphereMesh()
{
RebuildResources();
return m_sphereMesh;
}
/// <summary>Get a Box Mesh</summary>
/// <returns>A Box Mesh</returns>
public Mesh RequestBoxMesh()
{
RebuildResources();
return m_boxMesh;
}
/// <summary>Get a Cone Mesh</summary>
/// <returns>A Cone Mesh</returns>
public Mesh RequestConeMesh()
{
RebuildResources();
return m_coneMesh;
}
/// <summary>Get a Pyramid Mesh</summary>
/// <returns>A Pyramid Mesh</returns>
public Mesh RequestPyramidMesh()
{
RebuildResources();
return m_pyramidMesh;
}
}
}