69 lines
3.1 KiB
C#
69 lines
3.1 KiB
C#
|
// Cellular noise ("Worley noise") in 3D in GLSL.
|
||
|
// Copyright (c) Stefan Gustavson 2011-04-19. All rights reserved.
|
||
|
// This code is released under the conditions of the MIT license.
|
||
|
// See LICENSE file for details.
|
||
|
// https://github.com/stegu/webgl-noise
|
||
|
|
||
|
using static Unity.Mathematics.math;
|
||
|
|
||
|
namespace Unity.Mathematics
|
||
|
{
|
||
|
public static partial class noise
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// 3D Cellular noise ("Worley noise") with a 2x2x2 search window.
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// Faster than using 3x3x3, at the expense of some pattern artifacts. F2 is often wrong and has sharp discontinuities. If you need a smooth F2, use the slower 3x3x3 version.
|
||
|
/// </remarks>
|
||
|
/// <param name="P">A point in 3D space.</param>
|
||
|
/// <returns>Feature points. F1 is in the x component, F2 in the y component.</returns>
|
||
|
public static float2 cellular2x2x2(float3 P)
|
||
|
{
|
||
|
const float K = 0.142857142857f; // 1/7
|
||
|
const float Ko = 0.428571428571f; // 1/2-K/2
|
||
|
const float K2 = 0.020408163265306f; // 1/(7*7)
|
||
|
const float Kz = 0.166666666667f; // 1/6
|
||
|
const float Kzo = 0.416666666667f; // 1/2-1/6*2
|
||
|
const float jitter = 0.8f; // smaller jitter gives less errors in F2
|
||
|
|
||
|
float3 Pi = mod289(floor(P));
|
||
|
float3 Pf = frac(P);
|
||
|
float4 Pfx = Pf.x + float4(0.0f, -1.0f, 0.0f, -1.0f);
|
||
|
float4 Pfy = Pf.y + float4(0.0f, 0.0f, -1.0f, -1.0f);
|
||
|
float4 p = permute(Pi.x + float4(0.0f, 1.0f, 0.0f, 1.0f));
|
||
|
p = permute(p + Pi.y + float4(0.0f, 0.0f, 1.0f, 1.0f));
|
||
|
float4 p1 = permute(p + Pi.z); // z+0
|
||
|
float4 p2 = permute(p + Pi.z + float4(1.0f,1.0f,1.0f,1.0f)); // z+1
|
||
|
float4 ox1 = frac(p1 * K) - Ko;
|
||
|
float4 oy1 = mod7(floor(p1 * K)) * K - Ko;
|
||
|
float4 oz1 = floor(p1 * K2) * Kz - Kzo; // p1 < 289 guaranteed
|
||
|
float4 ox2 = frac(p2 * K) - Ko;
|
||
|
float4 oy2 = mod7(floor(p2 * K)) * K - Ko;
|
||
|
float4 oz2 = floor(p2 * K2) * Kz - Kzo;
|
||
|
float4 dx1 = Pfx + jitter * ox1;
|
||
|
float4 dy1 = Pfy + jitter * oy1;
|
||
|
float4 dz1 = Pf.z + jitter * oz1;
|
||
|
float4 dx2 = Pfx + jitter * ox2;
|
||
|
float4 dy2 = Pfy + jitter * oy2;
|
||
|
float4 dz2 = Pf.z - 1.0f + jitter * oz2;
|
||
|
float4 d1 = dx1 * dx1 + dy1 * dy1 + dz1 * dz1; // z+0
|
||
|
float4 d2 = dx2 * dx2 + dy2 * dy2 + dz2 * dz2; // z+1
|
||
|
|
||
|
// Sort out the two smallest distances (F1, F2)
|
||
|
|
||
|
// Do it right and sort out both F1 and F2
|
||
|
float4 d = min(d1,d2); // F1 is now in d
|
||
|
d2 = max(d1,d2); // Make sure we keep all candidates for F2
|
||
|
d.xy = (d.x < d.y) ? d.xy : d.yx; // Swap smallest to d.x
|
||
|
d.xz = (d.x < d.z) ? d.xz : d.zx;
|
||
|
d.xw = (d.x < d.w) ? d.xw : d.wx; // F1 is now in d.x
|
||
|
d.yzw = min(d.yzw, d2.yzw); // F2 now not in d2.yzw
|
||
|
d.y = min(d.y, d.z); // nor in d.z
|
||
|
d.y = min(d.y, d.w); // nor in d.w
|
||
|
d.y = min(d.y, d2.x); // F2 is now in d.y
|
||
|
return sqrt(d.xy); // F1 and F2
|
||
|
}
|
||
|
}
|
||
|
}
|