Singularity/Library/PackageCache/com.unity.2d.common@6.0.6/Runtime/UTess2D/UTess.cs

1020 lines
38 KiB
C#
Raw Normal View History

2024-05-06 14:45:45 -04:00
using System;
using System.Collections.Generic;
using System.Reflection;
using Unity.Profiling;
using Unity.Collections;
using Unity.Mathematics;
using Unity.Collections.LowLevel.Unsafe;
namespace UnityEngine.U2D.Common.UTess
{
enum UEventType
{
EVENT_POINT = 0,
EVENT_END = 1,
EVENT_START = 2,
};
struct UEvent
{
public float2 a;
public float2 b;
public int idx;
public int type;
};
struct UHull
{
public float2 a;
public float2 b;
public int idx;
public ArraySlice<int> ilarray;
public int ilcount;
public ArraySlice<int> iuarray;
public int iucount;
};
struct UStar
{
public ArraySlice<int> points;
public int pointCount;
};
struct UBounds
{
public double2 min;
public double2 max;
};
struct UCircle
{
public float2 center;
public float radius;
};
struct UTriangle
{
public float2 va;
public float2 vb;
public float2 vc;
public UCircle c;
public float area;
public int3 indices;
};
struct UEncroachingSegment
{
public float2 a;
public float2 b;
public int index;
}
internal interface ICondition2<in T, in U>
{
bool Test(T x, U y, ref float t);
}
struct XCompare : IComparer<double>
{
public int Compare(double a, double b)
{
return (a < b) ? -1 : 1;
}
}
unsafe struct IntersectionCompare : IComparer<int2>
{
public Array<double2> points;
public Array<int2> edges;
public fixed double xvasort[4];
public fixed double xvbsort[4];
public int Compare(int2 a, int2 b)
{
var e1a = edges[a.x];
var e1b = edges[a.y];
var e2a = edges[b.x];
var e2b = edges[b.y];
xvasort[0] = points[e1a.x].x;
xvasort[1] = points[e1a.y].x;
xvasort[2] = points[e1b.x].x;
xvasort[3] = points[e1b.y].x;
xvbsort[0] = points[e2a.x].x;
xvbsort[1] = points[e2a.y].x;
xvbsort[2] = points[e2b.x].x;
xvbsort[3] = points[e2b.y].x;
fixed (double* xvasortPtr = xvasort)
{
ModuleHandle.InsertionSort<double, XCompare>(xvasortPtr, 0, 3, new XCompare());
}
fixed (double* xvbsortPtr = xvbsort)
{
ModuleHandle.InsertionSort<double, XCompare>(xvbsortPtr, 0, 3, new XCompare());
}
for (int i = 0; i < 4; ++i)
if (xvasort[i] - xvbsort[i] != 0)
return xvasort[i] < xvbsort[i] ? -1 : 1;
return points[e1a.x].y < points[e1a.x].y ? -1 : 1;
}
}
struct TessEventCompare : IComparer<UEvent>
{
public int Compare(UEvent a, UEvent b)
{
float f = (a.a.x - b.a.x);
if (0 != f)
return (f > 0) ? 1 : -1;
f = (a.a.y - b.a.y);
if (0 != f)
return (f > 0) ? 1 : -1;
int i = a.type - b.type;
if (0 != i)
return i;
if (a.type != (int)UEventType.EVENT_POINT)
{
float o = ModuleHandle.OrientFast(a.a, a.b, b.b);
if (0 != o)
{
return (o > 0) ? 1 : -1;
}
}
return a.idx - b.idx;
}
}
struct TessEdgeCompare : IComparer<int2>
{
public int Compare(int2 a, int2 b)
{
int i = a.x - b.x;
if (0 != i)
return i;
i = a.y - b.y;
return i;
}
}
struct TessCellCompare : IComparer<int3>
{
public int Compare(int3 a, int3 b)
{
int i = a.x - b.x;
if (0 != i)
return i;
i = a.y - b.y;
if (0 != i)
return i;
i = a.z - b.z;
return i;
}
}
struct TessJunctionCompare : IComparer<int2>
{
public int Compare(int2 a, int2 b)
{
int i = a.x - b.x;
if (0 != i)
return i;
i = a.y - b.y;
return i;
}
}
struct DelaEdgeCompare : IComparer<int4>
{
public int Compare(int4 a, int4 b)
{
int i = a.x - b.x;
if (0 != i)
return i;
i = a.y - b.y;
if (0 != i)
return i;
i = a.z - b.z;
if (0 != i)
return i;
i = a.w - b.w;
return i;
}
}
struct TessLink
{
internal NativeArray<int> roots;
internal NativeArray<int> ranks;
internal static TessLink CreateLink(int count, Allocator allocator)
{
TessLink link = new TessLink();
link.roots = new NativeArray<int>(count, allocator);
link.ranks = new NativeArray<int>(count, allocator);
for (int i = 0; i < count; ++i)
{
link.roots[i] = i;
link.ranks[i] = 0;
}
return link;
}
internal static void DestroyLink(TessLink link)
{
link.ranks.Dispose();
link.roots.Dispose();
}
internal int Find(int x)
{
var x0 = x;
while (roots[x] != x)
{
x = roots[x];
}
while (roots[x0] != x)
{
var y = roots[x0];
roots[x0] = x;
x0 = y;
}
return x;
}
internal void Link(int x, int y)
{
var xr = Find(x);
var yr = Find(y);
if (xr == yr)
{
return;
}
var xd = ranks[xr];
var yd = ranks[yr];
if (xd < yd)
{
roots[xr] = yr;
}
else if (yd < xd)
{
roots[yr] = xr;
}
else
{
roots[yr] = xr;
++ranks[xr];
}
}
};
internal struct ModuleHandle
{
// Max Edge Count with Subdivision allowed. This is already a very relaxed limit
// and anything beyond are basically littered with numerous paths.
internal static readonly int kMaxArea = 65536;
internal static readonly int kMaxEdgeCount = 65536;
internal static readonly int kMaxIndexCount = 65536;
internal static readonly int kMaxVertexCount = 65536;
internal static readonly int kMaxTriangleCount = kMaxIndexCount / 3;
internal static readonly int kMaxRefineIterations = 48;
internal static readonly int kMaxSmoothenIterations = 256;
internal static readonly float kIncrementAreaFactor = 1.2f;
internal static void Copy<T>(NativeArray<T> src, int srcIndex, NativeArray<T> dst, int dstIndex, int length)
where T : struct
{
NativeArray<T>.Copy(src, srcIndex, dst, dstIndex, length);
}
internal static void Copy<T>(NativeArray<T> src, NativeArray<T> dst, int length)
where T : struct
{
Copy(src, 0, dst, 0, length);
}
internal static unsafe void InsertionSort<T, U>(void* array, int lo, int hi, U comp)
where T : struct where U : IComparer<T>
{
int i, j;
T t;
for (i = lo; i < hi; i++)
{
j = i;
t = UnsafeUtility.ReadArrayElement<T>(array, i + 1);
while (j >= lo && comp.Compare(t, UnsafeUtility.ReadArrayElement<T>(array, j)) < 0)
{
UnsafeUtility.WriteArrayElement<T>(array, j + 1, UnsafeUtility.ReadArrayElement<T>(array, j));
j--;
}
UnsafeUtility.WriteArrayElement<T>(array, j + 1, t);
}
}
// Search Lower Bounds
internal static int GetLower<T, U, X>(NativeArray<T> values, int count, U check, X condition)
where T : struct where U : struct where X : ICondition2<T, U>
{
int l = 0;
int h = count - 1;
int i = l - 1;
while (l <= h)
{
int m = ((int)(l + h)) >> 1;
float t = 0;
if (condition.Test(values[m], check, ref t))
{
i = m;
l = m + 1;
}
else
{
h = m - 1;
}
}
return i;
}
// Search Upper Bounds
internal static int GetUpper<T, U, X>(NativeArray<T> values, int count, U check, X condition)
where T : struct where U : struct where X : ICondition2<T, U>
{
int l = 0;
int h = count - 1;
int i = h + 1;
while (l <= h)
{
int m = ((int)(l + h)) >> 1;
float t = 0;
if (condition.Test(values[m], check, ref t))
{
i = m;
h = m - 1;
}
else
{
l = m + 1;
}
}
return i;
}
// Search for Equal
internal static int GetEqual<T, U, X>(Array<T> values, int count, U check, X condition)
where T : struct where U : struct where X : ICondition2<T, U>
{
int l = 0;
int h = count - 1;
while (l <= h)
{
int m = ((int)(l + h)) >> 1;
float t = 0;
condition.Test(values[m], check, ref t);
if (t == 0)
{
return m;
}
else if (t <= 0)
{
l = m + 1;
}
else
{
h = m - 1;
}
}
return -1;
}
// Search for Equal
internal static int GetEqual<T, U, X>(NativeArray<T> values, int count, U check, X condition)
where T : struct where U : struct where X : ICondition2<T, U>
{
int l = 0;
int h = count - 1;
while (l <= h)
{
int m = ((int)(l + h)) >> 1;
float t = 0;
condition.Test(values[m], check, ref t);
if (t == 0)
{
return m;
}
else if (t <= 0)
{
l = m + 1;
}
else
{
h = m - 1;
}
}
return -1;
}
// From https://www.cs.cmu.edu/afs/cs/project/quake/public/code/predicates.c and is public domain. Can't find one within Unity.
internal static float OrientFast(float2 a, float2 b, float2 c)
{
float epsilon = 1.1102230246251565e-16f;
float errbound3 = (3.0f + 16.0f * epsilon) * epsilon;
float l = (a.y - c.y) * (b.x - c.x);
float r = (a.x - c.x) * (b.y - c.y);
float det = l - r;
float s = 0;
if (l > 0)
{
if (r <= 0)
{
return det;
}
else
{
s = l + r;
}
}
else if (l < 0)
{
if (r >= 0)
{
return det;
}
else
{
s = -(l + r);
}
}
else
{
return det;
}
float tol = errbound3 * s;
if (det >= tol || det <= -tol)
{
return det;
}
return epsilon;
}
// This is needed when doing PlanarGraph as it requires high precision separation of points.
internal static double OrientFastDouble(double2 a, double2 b, double2 c)
{
double epsilon = 1.1102230246251565e-16f;
double errbound3 = (3.0 + 16.0 * epsilon) * epsilon;
double l = (a.y - c.y) * (b.x - c.x);
double r = (a.x - c.x) * (b.y - c.y);
double det = l - r;
double s = 0;
if (l > 0)
{
if (r <= 0)
{
return det;
}
else
{
s = l + r;
}
}
else if (l < 0)
{
if (r >= 0)
{
return det;
}
else
{
s = -(l + r);
}
}
else
{
return det;
}
double tol = errbound3 * s;
if (det >= tol || det <= -tol)
{
return det;
}
return epsilon;
}
internal static UCircle CircumCircle(UTriangle tri)
{
float xa = tri.va.x * tri.va.x;
float xb = tri.vb.x * tri.vb.x;
float xc = tri.vc.x * tri.vc.x;
float ya = tri.va.y * tri.va.y;
float yb = tri.vb.y * tri.vb.y;
float yc = tri.vc.y * tri.vc.y;
float c = 2f * ((tri.vb.x - tri.va.x) * (tri.vc.y - tri.va.y) - (tri.vb.y - tri.va.y) * (tri.vc.x - tri.va.x));
float x = ((tri.vc.y - tri.va.y) * (xb - xa + yb - ya) + (tri.va.y - tri.vb.y) * (xc - xa + yc - ya)) / c;
float y = ((tri.va.x - tri.vc.x) * (xb - xa + yb - ya) + (tri.vb.x - tri.va.x) * (xc - xa + yc - ya)) / c;
float vx = (tri.va.x - x);
float vy = (tri.va.y - y);
return new UCircle { center = new float2(x, y), radius = math.sqrt((vx * vx) + (vy * vy)) };
}
internal static bool IsInsideCircle(UCircle c, float2 v)
{
return math.distance(v, c.center) < c.radius;
}
internal static float TriangleArea(float2 va, float2 vb, float2 vc)
{
float3 a = new float3(va.x, va.y, 0);
float3 b = new float3(vb.x, vb.y, 0);
float3 c = new float3(vc.x, vc.y, 0);
float3 v = math.cross(a - b, a - c);
return math.abs(v.z) * 0.5f;
}
internal static float Sign(float2 p1, float2 p2, float2 p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
internal static bool IsInsideTriangle(float2 pt, float2 v1, float2 v2, float2 v3)
{
float d1, d2, d3;
bool has_neg, has_pos;
d1 = Sign(pt, v1, v2);
d2 = Sign(pt, v2, v3);
d3 = Sign(pt, v3, v1);
has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
return !(has_neg && has_pos);
}
internal static bool IsInsideTriangleApproximate(float2 pt, float2 v1, float2 v2, float2 v3)
{
float d0, d1, d2, d3;
d0 = TriangleArea(v1, v2, v3);
d1 = TriangleArea(pt, v1, v2);
d2 = TriangleArea(pt, v2, v3);
d3 = TriangleArea(pt, v3, v1);
float epsilon = 1.1102230246251565e-16f;
return Mathf.Abs(d0 - (d1 + d2 + d3)) < epsilon;
}
internal static bool IsInsideCircle(float2 a, float2 b, float2 c, float2 p)
{
float ab = math.dot(a, a);
float cd = math.dot(b, b);
float ef = math.dot(c, c);
float ax = a.x;
float ay = a.y;
float bx = b.x;
float by = b.y;
float cx = c.x;
float cy = c.y;
float circum_x = (ab * (cy - by) + cd * (ay - cy) + ef * (by - ay)) /
(ax * (cy - by) + bx * (ay - cy) + cx * (by - ay));
float circum_y = (ab * (cx - bx) + cd * (ax - cx) + ef * (bx - ax)) /
(ay * (cx - bx) + by * (ax - cx) + cy * (bx - ax));
float2 circum = new float2();
circum.x = circum_x / 2;
circum.y = circum_y / 2;
float circum_radius = math.distance(a, circum);
float dist = math.distance(p, circum);
return circum_radius - dist > 0.00001f;
}
internal static void BuildTriangles(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref float maxArea, ref float avgArea, ref float minArea)
{
// Check if there are invalid triangles or segments.
for (int i = 0; i < indexCount; i += 3)
{
UTriangle tri = new UTriangle();
var i0 = indices[i + 0];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
tri.va = vertices[i0];
tri.vb = vertices[i1];
tri.vc = vertices[i2];
tri.c = CircumCircle(tri);
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
maxArea = math.max(tri.area, maxArea);
minArea = math.min(tri.area, minArea);
avgArea = avgArea + tri.area;
triangles[triangleCount++] = tri;
}
avgArea = avgArea / triangleCount;
}
internal static void BuildTriangles(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref Array<UTriangle> triangles, ref int triangleCount, ref float maxArea, ref float avgArea, ref float minArea)
{
// Check if there are invalid triangles or segments.
for (int i = 0; i < indexCount; i += 3)
{
UTriangle tri = new UTriangle();
var i0 = indices[i + 0];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
tri.va = vertices[i0];
tri.vb = vertices[i1];
tri.vc = vertices[i2];
tri.c = CircumCircle(tri);
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
maxArea = math.max(tri.area, maxArea);
minArea = math.min(tri.area, minArea);
avgArea = avgArea + tri.area;
triangles[triangleCount++] = tri;
}
avgArea = avgArea / triangleCount;
}
internal static void BuildTriangles(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref float maxArea, ref float avgArea, ref float minArea, ref float maxEdge, ref float avgEdge, ref float minEdge)
{
// Check if there are invalid triangles or segments.
for (int i = 0; i < indexCount; i += 3)
{
UTriangle tri = new UTriangle();
var i0 = indices[i + 0];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
tri.va = vertices[i0];
tri.vb = vertices[i1];
tri.vc = vertices[i2];
tri.c = CircumCircle(tri);
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
maxArea = math.max(tri.area, maxArea);
minArea = math.min(tri.area, minArea);
avgArea = avgArea + tri.area;
var e1 = math.distance(tri.va, tri.vb);
var e2 = math.distance(tri.vb, tri.vc);
var e3 = math.distance(tri.vc, tri.va);
maxEdge = math.max(e1, maxEdge);
maxEdge = math.max(e2, maxEdge);
maxEdge = math.max(e3, maxEdge);
minEdge = math.min(e1, minEdge);
minEdge = math.min(e2, minEdge);
minEdge = math.min(e3, minEdge);
avgEdge = avgEdge + e1;
avgEdge = avgEdge + e2;
avgEdge = avgEdge + e3;
triangles[triangleCount++] = tri;
}
avgArea = avgArea / triangleCount;
avgEdge = avgEdge / indexCount;
}
internal static void BuildTrianglesAndEdges(NativeArray<float2> vertices, int vertexCount, NativeArray<int> indices, int indexCount, ref NativeArray<UTriangle> triangles, ref int triangleCount, ref NativeArray<int4> delaEdges, ref int delaEdgeCount, ref float maxArea, ref float avgArea, ref float minArea)
{
// Check if there are invalid triangles or segments.
for (int i = 0; i < indexCount; i += 3)
{
UTriangle tri = new UTriangle();
var i0 = indices[i + 0];
var i1 = indices[i + 1];
var i2 = indices[i + 2];
tri.va = vertices[i0];
tri.vb = vertices[i1];
tri.vc = vertices[i2];
tri.c = CircumCircle(tri);
tri.area = TriangleArea(tri.va, tri.vb, tri.vc);
maxArea = math.max(tri.area, maxArea);
minArea = math.min(tri.area, minArea);
avgArea = avgArea + tri.area;
tri.indices = new int3(i0, i1, i2);
// Outputs.
delaEdges[delaEdgeCount++] = new int4(math.min(i0, i1), math.max(i0, i1), triangleCount, -1);
delaEdges[delaEdgeCount++] = new int4(math.min(i1, i2), math.max(i1, i2), triangleCount, -1);
delaEdges[delaEdgeCount++] = new int4(math.min(i2, i0), math.max(i2, i0), triangleCount, -1);
triangles[triangleCount++] = tri;
}
avgArea = avgArea / triangleCount;
}
static void CopyGraph(NativeArray<float2> srcPoints, int srcPointCount, ref NativeArray<float2> dstPoints, ref int dstPointCount, NativeArray<int2> srcEdges, int srcEdgeCount, ref NativeArray<int2> dstEdges, ref int dstEdgeCount)
{
dstEdgeCount = srcEdgeCount;
dstPointCount = srcPointCount;
Copy(srcEdges, dstEdges, srcEdgeCount);
Copy(srcPoints, dstPoints, srcPointCount);
}
static void CopyGeometry(NativeArray<int> srcIndices, int srcIndexCount, ref NativeArray<int> dstIndices, ref int dstIndexCount, NativeArray<float2> srcVertices, int srcVertexCount, ref NativeArray<float2> dstVertices, ref int dstVertexCount)
{
dstIndexCount = srcIndexCount;
dstVertexCount = srcVertexCount;
Copy(srcIndices, dstIndices, srcIndexCount);
Copy(srcVertices, dstVertices, srcVertexCount);
}
static void TransferOutput(NativeArray<int2> srcEdges, int srcEdgeCount, ref NativeArray<int2> dstEdges, ref int dstEdgeCount, NativeArray<int> srcIndices, int srcIndexCount, ref NativeArray<int> dstIndices, ref int dstIndexCount, NativeArray<float2> srcVertices, int srcVertexCount, ref NativeArray<float2> dstVertices, ref int dstVertexCount)
{
dstEdgeCount = srcEdgeCount;
dstIndexCount = srcIndexCount;
dstVertexCount = srcVertexCount;
Copy(srcEdges, dstEdges, srcEdgeCount);
Copy(srcIndices, dstIndices, srcIndexCount);
Copy(srcVertices, dstVertices, srcVertexCount);
}
static void GraphConditioner(NativeArray<float2> points, ref NativeArray<float2> pgPoints, ref int pgPointCount, ref NativeArray<int2> pgEdges, ref int pgEdgeCount, bool resetTopology)
{
var min = new float2(math.INFINITY, math.INFINITY);
var max = float2.zero;
for (int i = 0; i < points.Length; ++i)
{
min = math.min(points[i], min);
max = math.max(points[i], max);
}
var ext = (max - min);
var mid = ext * 0.5f;
var kNonRect = 0.0001f;
// Construct a simple convex hull rect!.
pgPointCount = resetTopology ? 0 : pgPointCount;
var pc = pgPointCount;
pgPoints[pgPointCount++] = new float2(min.x, min.y); pgPoints[pgPointCount++] = new float2(min.x - kNonRect, min.y + mid.y); pgPoints[pgPointCount++] = new float2(min.x, max.y); pgPoints[pgPointCount++] = new float2(min.x + mid.x, max.y + kNonRect);
pgPoints[pgPointCount++] = new float2(max.x, max.y); pgPoints[pgPointCount++] = new float2(max.x + kNonRect, min.y + mid.y); pgPoints[pgPointCount++] = new float2(max.x, min.y); pgPoints[pgPointCount++] = new float2(min.x + mid.x, min.y - kNonRect);
pgEdgeCount = 8;
pgEdges[0] = new int2(pc + 0, pc + 1); pgEdges[1] = new int2(pc + 1, pc + 2); pgEdges[2] = new int2(pc + 2, pc + 3); pgEdges[3] = new int2(pc + 3, pc + 4);
pgEdges[4] = new int2(pc + 4, pc + 5); pgEdges[5] = new int2(pc + 5, pc + 6); pgEdges[6] = new int2(pc + 6, pc + 7); pgEdges[7] = new int2(pc + 7, pc + 0);
}
// Reorder vertices.
static void Reorder(int startVertexCount, int index, ref NativeArray<int> indices, ref int indexCount, ref NativeArray<float2> vertices, ref int vertexCount)
{
var found = false;
for (var i = 0; i < indexCount; ++i)
{
if (indices[i] != index) continue;
found = true;
break;
}
if (!found)
{
vertexCount--;
vertices[index] = vertices[vertexCount];
for (var i = 0; i < indexCount; ++i)
if (indices[i] == vertexCount)
indices[i] = index;
}
}
// Perform Sanitization.
internal static void VertexCleanupConditioner(int startVertexCount, ref NativeArray<int> indices, ref int indexCount, ref NativeArray<float2> vertices, ref int vertexCount)
{
for (int i = startVertexCount; i < vertexCount; ++i)
{
Reorder(startVertexCount,i, ref indices, ref indexCount, ref vertices, ref vertexCount);
}
}
public static float4 ConvexQuad(Allocator allocator, NativeArray<float2> points, NativeArray<int2> edges, ref NativeArray<float2> outVertices, ref int outVertexCount, ref NativeArray<int> outIndices, ref int outIndexCount, ref NativeArray<int2> outEdges, ref int outEdgeCount)
{
// Inputs are garbage, just early out.
float4 ret = float4.zero;
outEdgeCount = 0; outIndexCount = 0; outVertexCount = 0;
if (points.Length < 3 || points.Length >= kMaxVertexCount)
return ret;
// Ensure inputs form a proper PlanarGraph.
int pgEdgeCount = 0, pgPointCount = 0;
NativeArray<int2> pgEdges = new NativeArray<int2>(kMaxEdgeCount, allocator);
NativeArray<float2> pgPoints = new NativeArray<float2>(kMaxVertexCount, allocator);
// Valid Edges and Paths, correct the Planar Graph. If invalid create a simple convex hull rect.
GraphConditioner(points, ref pgPoints, ref pgPointCount, ref pgEdges, ref pgEdgeCount, true);
Tessellator.Tessellate(allocator, pgPoints, pgPointCount, pgEdges, pgEdgeCount, ref outVertices, ref outVertexCount, ref outIndices, ref outIndexCount);
// Dispose Temp Memory.
pgPoints.Dispose();
pgEdges.Dispose();
return ret;
}
public static float4 Tessellate(Allocator allocator, in NativeArray<float2> points, in NativeArray<int2> edges, ref NativeArray<float2> outVertices, out int outVertexCount, ref NativeArray<int> outIndices, out int outIndexCount, ref NativeArray<int2> outEdges, out int outEdgeCount)
{
// Inputs are garbage, just early out.
float4 ret = float4.zero;
outEdgeCount = 0; outIndexCount = 0; outVertexCount = 0;
if (points.Length < 3 || points.Length >= kMaxVertexCount)
return ret;
// Ensure inputs form a proper PlanarGraph.
bool validGraph = false, handleEdgeCase = false;
int pgEdgeCount = 0, pgPointCount = 0;
NativeArray<int2> pgEdges = new NativeArray<int2>(edges.Length * 8, allocator);
NativeArray<float2> pgPoints = new NativeArray<float2>(points.Length * 4, allocator);
// Valid Edges and Paths, correct the Planar Graph. If invalid create a simple convex hull rect.
if (0 != edges.Length)
{
validGraph = PlanarGraph.Validate(allocator, in points, points.Length, in edges, edges.Length, ref pgPoints,out pgPointCount, ref pgEdges, out pgEdgeCount);
}
// Fallbacks are now handled by the Higher level packages. Enable if UTess needs to handle it.
// #if UTESS_QUAD_FALLBACK
// if (!validGraph)
// {
// pgPointCount = 0;
// handleEdgeCase = true;
// ModuleHandle.Copy(points, pgPoints, points.Length);
// GraphConditioner(points, ref pgPoints, ref pgPointCount, ref pgEdges, ref pgEdgeCount, false);
// }
// #else
// If its not a valid Graph simply return back input Data without triangulation instead of going through UTess (pointless wasted cpu cycles).
if (!validGraph)
{
outEdgeCount = edges.Length;
outVertexCount = points.Length;
ModuleHandle.Copy(edges, outEdges, edges.Length);
ModuleHandle.Copy(points, outVertices, points.Length);
}
// Do a proper Delaunay Triangulation if Inputs are valid.
if (pgPointCount > 2 && pgEdgeCount > 2)
{
// Tessellate does not add new points, only PG and SD does. Assuming each point creates a degenerate triangle, * 4 is more than enough.
NativeArray<int> tsIndices = new NativeArray<int>(pgPointCount * 8, allocator);
NativeArray<float2> tsVertices = new NativeArray<float2>(pgPointCount * 4, allocator);
int tsIndexCount = 0, tsVertexCount = 0;
validGraph = Tessellator.Tessellate(allocator, pgPoints, pgPointCount, pgEdges, pgEdgeCount, ref tsVertices, ref tsVertexCount, ref tsIndices, ref tsIndexCount);
if (validGraph)
{
// Copy Out
TransferOutput(pgEdges, pgEdgeCount, ref outEdges, ref outEdgeCount, tsIndices, tsIndexCount, ref outIndices, ref outIndexCount, tsVertices, tsVertexCount, ref outVertices, ref outVertexCount);
if (handleEdgeCase == true)
outEdgeCount = 0;
}
tsVertices.Dispose();
tsIndices.Dispose();
}
// Dispose Temp Memory.
pgPoints.Dispose();
pgEdges.Dispose();
return ret;
}
public static float4 Subdivide(Allocator allocator, NativeArray<float2> points, NativeArray<int2> edges, ref NativeArray<float2> outVertices, ref int outVertexCount, ref NativeArray<int> outIndices, ref int outIndexCount, ref NativeArray<int2> outEdges, ref int outEdgeCount, float areaFactor, float targetArea, int refineIterations, int smoothenIterations)
{
// Inputs are garbage, just early out.
float4 ret = float4.zero;
outEdgeCount = 0; outIndexCount = 0; outVertexCount = 0;
if (points.Length < 3 || points.Length >= kMaxVertexCount || 0 == edges.Length)
return ret;
// Do a proper Delaunay Triangulation.
int tsIndexCount = 0, tsVertexCount = 0;
NativeArray<int> tsIndices = new NativeArray<int>(kMaxIndexCount, allocator);
NativeArray<float2> tsVertices = new NativeArray<float2>(kMaxVertexCount, allocator);
var validGraph = Tessellator.Tessellate(allocator, points, points.Length, edges, edges.Length, ref tsVertices, ref tsVertexCount, ref tsIndices, ref tsIndexCount);
// Refinement and Smoothing.
bool refined = false;
bool refinementRequired = (targetArea != 0 || areaFactor != 0);
if (validGraph && refinementRequired)
{
// Do Refinement until success.
float maxArea = 0;
float incArea = 0;
int rfEdgeCount = 0, rfPointCount = 0, rfIndexCount = 0, rfVertexCount = 0;
NativeArray<int2> rfEdges = new NativeArray<int2>(kMaxEdgeCount, allocator);
NativeArray<float2> rfPoints = new NativeArray<float2>(kMaxVertexCount, allocator);
NativeArray<int> rfIndices = new NativeArray<int>(kMaxIndexCount, allocator);
NativeArray<float2> rfVertices = new NativeArray<float2>(kMaxVertexCount, allocator);
ret.x = 0;
refineIterations = Math.Min(refineIterations, kMaxRefineIterations);
if (targetArea != 0)
{
// Increment for Iterations.
incArea = (targetArea / 10);
while (targetArea < kMaxArea && refineIterations > 0)
{
// Do Mesh Refinement.
CopyGraph(points, points.Length, ref rfPoints, ref rfPointCount, edges, edges.Length, ref rfEdges, ref rfEdgeCount);
CopyGeometry(tsIndices, tsIndexCount, ref rfIndices, ref rfIndexCount, tsVertices, tsVertexCount, ref rfVertices, ref rfVertexCount);
refined = Refinery.Condition(allocator, areaFactor, targetArea, ref rfPoints, ref rfPointCount, ref rfEdges, ref rfEdgeCount, ref rfVertices, ref rfVertexCount, ref rfIndices, ref rfIndexCount, ref maxArea);
if (refined && rfIndexCount > rfPointCount)
{
// Copy Out
ret.x = areaFactor;
TransferOutput(rfEdges, rfEdgeCount, ref outEdges, ref outEdgeCount, rfIndices, rfIndexCount, ref outIndices, ref outIndexCount, rfVertices, rfVertexCount, ref outVertices, ref outVertexCount);
break;
}
refined = false;
targetArea = targetArea + incArea;
refineIterations--;
}
}
else if (areaFactor != 0)
{
// Increment for Iterations.
areaFactor = math.lerp(0.1f, 0.54f, (areaFactor - 0.05f) / 0.45f); // Specific to Animation.
incArea = (areaFactor / 10);
while (areaFactor < 0.8f && refineIterations > 0)
{
// Do Mesh Refinement.
CopyGraph(points, points.Length, ref rfPoints, ref rfPointCount, edges, edges.Length, ref rfEdges, ref rfEdgeCount);
CopyGeometry(tsIndices, tsIndexCount, ref rfIndices, ref rfIndexCount, tsVertices, tsVertexCount, ref rfVertices, ref rfVertexCount);
refined = Refinery.Condition(allocator, areaFactor, targetArea, ref rfPoints, ref rfPointCount, ref rfEdges, ref rfEdgeCount, ref rfVertices, ref rfVertexCount, ref rfIndices, ref rfIndexCount, ref maxArea);
if (refined && rfIndexCount > rfPointCount)
{
// Copy Out
ret.x = areaFactor;
TransferOutput(rfEdges, rfEdgeCount, ref outEdges, ref outEdgeCount, rfIndices, rfIndexCount, ref outIndices, ref outIndexCount, rfVertices, rfVertexCount, ref outVertices, ref outVertexCount);
break;
}
refined = false;
areaFactor = areaFactor + incArea;
refineIterations--;
}
}
if (refined)
{
// Sanitize generated geometry data.
var preSmoothen = outVertexCount;
if (ret.x != 0)
VertexCleanupConditioner(tsVertexCount, ref rfIndices, ref rfIndexCount, ref rfVertices, ref rfVertexCount);
// Smoothen. At this point only vertex relocation is allowed, not vertex addition/removal.
// Note: Only refined mesh contains Steiner points and we only smoothen these points.
ret.y = 0;
smoothenIterations = math.clamp(smoothenIterations, 0, kMaxSmoothenIterations);
while (smoothenIterations > 0)
{
var smoothen = Smoothen.Condition(allocator, ref rfPoints, rfPointCount, rfEdges, rfEdgeCount, ref rfVertices, ref rfVertexCount, ref rfIndices, ref rfIndexCount);
if (!smoothen)
break;
// Copy Out
ret.y = (float)(smoothenIterations);
TransferOutput(rfEdges, rfEdgeCount, ref outEdges, ref outEdgeCount, rfIndices, rfIndexCount, ref outIndices, ref outIndexCount, rfVertices, rfVertexCount, ref outVertices, ref outVertexCount);
smoothenIterations--;
}
// Sanitize generated geometry data.
var postSmoothen = outVertexCount;
if (ret.y != 0)
VertexCleanupConditioner(tsVertexCount, ref outIndices, ref outIndexCount, ref outVertices, ref outVertexCount);
}
rfVertices.Dispose();
rfIndices.Dispose();
rfPoints.Dispose();
rfEdges.Dispose();
}
// Refinement failed but Graph succeeded.
if (validGraph && !refined)
{
// Copy Out
TransferOutput(edges, edges.Length, ref outEdges, ref outEdgeCount, tsIndices, tsIndexCount, ref outIndices, ref outIndexCount, tsVertices, tsVertexCount, ref outVertices, ref outVertexCount);
}
// Dispose Temp Memory.
tsVertices.Dispose();
tsIndices.Dispose();
return ret;
}
}
}