Singularity/Library/PackageCache/com.unity.timeline@1.6.4/Runtime/Evaluation/IntervalTree.cs

272 lines
8.3 KiB
C#
Raw Permalink Normal View History

2024-05-06 14:45:45 -04:00
using System;
using System.Collections.Generic;
namespace UnityEngine.Timeline
{
interface IInterval
{
Int64 intervalStart { get; }
Int64 intervalEnd { get; }
}
struct IntervalTreeNode // interval node,
{
public Int64 center; // midpoint for this node
public int first; // index of first element of this node in m_Entries
public int last; // index of the last element of this node in m_Entries
public int left; // index in m_Nodes of the left subnode
public int right; // index in m_Nodes of the right subnode
}
class IntervalTree<T> where T : IInterval
{
internal struct Entry
{
public Int64 intervalStart;
public Int64 intervalEnd;
public T item;
}
const int kMinNodeSize = 10; // the minimum number of entries to have subnodes
const int kInvalidNode = -1;
const Int64 kCenterUnknown = Int64.MaxValue; // center hasn't been calculated. indicates no children
readonly List<Entry> m_Entries = new List<Entry>();
readonly List<IntervalTreeNode> m_Nodes = new List<IntervalTreeNode>();
/// <summary>
/// Whether the tree will be rebuilt on the next query
/// </summary>
public bool dirty { get; internal set; }
/// <summary>
/// Add an IInterval to the tree
/// </summary>
public void Add(T item)
{
if (item == null)
return;
m_Entries.Add(
new Entry()
{
intervalStart = item.intervalStart,
intervalEnd = item.intervalEnd,
item = item
}
);
dirty = true;
}
/// <summary>
/// Query the tree at a particular time
/// </summary>
/// <param name="value"></param>
/// <param name="results"></param>
public void IntersectsWith(Int64 value, List<T> results)
{
if (m_Entries.Count == 0)
return;
if (dirty)
{
Rebuild();
dirty = false;
}
if (m_Nodes.Count > 0)
Query(m_Nodes[0], value, results);
}
/// <summary>
/// Query the tree at a particular range of time
/// </summary>
/// <param name="start"></param>
/// <param name="end"></param>
/// <param name="results"></param>
public void IntersectsWithRange(Int64 start, Int64 end, List<T> results)
{
if (start > end)
return;
if (m_Entries.Count == 0)
return;
if (dirty)
{
Rebuild();
dirty = false;
}
if (m_Nodes.Count > 0)
QueryRange(m_Nodes[0], start, end, results);
}
/// <summary>
/// Updates the intervals from their source. Use this to detect if the data in the tree
/// has changed.
/// </summary>
public void UpdateIntervals()
{
bool isDirty = false;
for (int i = 0; i < m_Entries.Count; i++)
{
var n = m_Entries[i];
var s = n.item.intervalStart;
var e = n.item.intervalEnd;
isDirty |= n.intervalStart != s;
isDirty |= n.intervalEnd != e;
m_Entries[i] = new Entry()
{
intervalStart = s,
intervalEnd = e,
item = n.item
};
}
dirty |= isDirty;
}
private void Query(IntervalTreeNode intervalTreeNode, Int64 value, List<T> results)
{
for (int i = intervalTreeNode.first; i <= intervalTreeNode.last; i++)
{
var entry = m_Entries[i];
if (value >= entry.intervalStart && value < entry.intervalEnd)
{
results.Add(entry.item);
}
}
if (intervalTreeNode.center == kCenterUnknown)
return;
if (intervalTreeNode.left != kInvalidNode && value < intervalTreeNode.center)
Query(m_Nodes[intervalTreeNode.left], value, results);
if (intervalTreeNode.right != kInvalidNode && value > intervalTreeNode.center)
Query(m_Nodes[intervalTreeNode.right], value, results);
}
private void QueryRange(IntervalTreeNode intervalTreeNode, Int64 start, Int64 end, List<T> results)
{
for (int i = intervalTreeNode.first; i <= intervalTreeNode.last; i++)
{
var entry = m_Entries[i];
if (end >= entry.intervalStart && start < entry.intervalEnd)
{
results.Add(entry.item);
}
}
if (intervalTreeNode.center == kCenterUnknown)
return;
if (intervalTreeNode.left != kInvalidNode && start < intervalTreeNode.center)
QueryRange(m_Nodes[intervalTreeNode.left], start, end, results);
if (intervalTreeNode.right != kInvalidNode && end > intervalTreeNode.center)
QueryRange(m_Nodes[intervalTreeNode.right], start, end, results);
}
private void Rebuild()
{
m_Nodes.Clear();
m_Nodes.Capacity = m_Entries.Capacity;
Rebuild(0, m_Entries.Count - 1);
}
private int Rebuild(int start, int end)
{
IntervalTreeNode intervalTreeNode = new IntervalTreeNode();
// minimum size, don't subdivide
int count = end - start + 1;
if (count < kMinNodeSize)
{
intervalTreeNode = new IntervalTreeNode() { center = kCenterUnknown, first = start, last = end, left = kInvalidNode, right = kInvalidNode };
m_Nodes.Add(intervalTreeNode);
return m_Nodes.Count - 1;
}
var min = Int64.MaxValue;
var max = Int64.MinValue;
for (int i = start; i <= end; i++)
{
var o = m_Entries[i];
min = Math.Min(min, o.intervalStart);
max = Math.Max(max, o.intervalEnd);
}
var center = (max + min) / 2;
intervalTreeNode.center = center;
// first pass, put every thing left of center, left
int x = start;
int y = end;
while (true)
{
while (x <= end && m_Entries[x].intervalEnd < center)
x++;
while (y >= start && m_Entries[y].intervalEnd >= center)
y--;
if (x > y)
break;
var nodeX = m_Entries[x];
var nodeY = m_Entries[y];
m_Entries[y] = nodeX;
m_Entries[x] = nodeY;
}
intervalTreeNode.first = x;
// second pass, put every start passed the center right
y = end;
while (true)
{
while (x <= end && m_Entries[x].intervalStart <= center)
x++;
while (y >= start && m_Entries[y].intervalStart > center)
y--;
if (x > y)
break;
var nodeX = m_Entries[x];
var nodeY = m_Entries[y];
m_Entries[y] = nodeX;
m_Entries[x] = nodeY;
}
intervalTreeNode.last = y;
// reserve a place
m_Nodes.Add(new IntervalTreeNode());
int index = m_Nodes.Count - 1;
intervalTreeNode.left = kInvalidNode;
intervalTreeNode.right = kInvalidNode;
if (start < intervalTreeNode.first)
intervalTreeNode.left = Rebuild(start, intervalTreeNode.first - 1);
if (end > intervalTreeNode.last)
intervalTreeNode.right = Rebuild(intervalTreeNode.last + 1, end);
m_Nodes[index] = intervalTreeNode;
return index;
}
public void Clear()
{
m_Entries.Clear();
m_Nodes.Clear();
}
}
}