Firstborn/Library/PackageCache/com.unity.collections@1.4.0/Unity.Collections/Deprecated.cs
Schaken-Mods b486678290 Library -Artifacts
Library -Artifacts
2023-03-28 12:24:16 -05:00

4433 lines
175 KiB
C#

using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using Unity.Jobs;
using Unity.Mathematics;
using UnityEngine.Assertions;
using Unity.Burst;
using Unity.Collections.LowLevel.Unsafe;
#pragma warning disable 618 // disable obsolete warnings
namespace Unity.Collections.LowLevel.Unsafe
{
/// <summary>
/// An unmanaged, untyped, resizable list, without any thread safety check features.
/// </summary>
[DebuggerDisplay("Length = {Length}, Capacity = {Capacity}, IsCreated = {IsCreated}, IsEmpty = {IsEmpty}")]
[StructLayout(LayoutKind.Sequential)]
[Obsolete("Untyped UnsafeList is deprecated, please use UnsafeList<T> instead. (RemovedAfter 2021-05-18)", false)]
public unsafe struct UnsafeList
: INativeDisposable
{
/// <summary>
/// </summary>
[NativeDisableUnsafePtrRestriction]
public void* Ptr;
/// <summary>
/// </summary>
public int Length;
public readonly int unused;
/// <summary>
/// </summary>
public int Capacity;
/// <summary>
/// </summary>
public AllocatorManager.AllocatorHandle Allocator;
/// <summary>
/// Constructs a new container with type of memory allocation.
/// </summary>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <remarks>The list initially has a capacity of one. To avoid reallocating memory for the list, specify
/// sufficient capacity up front.</remarks>
public UnsafeList(Allocator allocator) : this()
{
Ptr = null;
Length = 0;
Capacity = 0;
Allocator = allocator;
}
/// <summary>
/// Constructs container as view into memory.
/// </summary>
/// <param name="ptr">Pointer to data.</param>
/// <param name="length">Lenght of data in bytes.</param>
public UnsafeList(void* ptr, int length) : this()
{
Ptr = ptr;
Length = length;
Capacity = length;
Allocator = Collections.Allocator.None;
}
internal void Initialize<U>(int sizeOf, int alignOf, int initialCapacity, ref U allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) where U : unmanaged, AllocatorManager.IAllocator
{
Allocator = allocator.Handle;
Ptr = null;
Length = 0;
Capacity = 0;
if (initialCapacity != 0)
{
SetCapacity(ref allocator, sizeOf, alignOf, initialCapacity);
}
if (options == NativeArrayOptions.ClearMemory
&& Ptr != null)
{
UnsafeUtility.MemClear(Ptr, Capacity * sizeOf);
}
}
internal static UnsafeList New<U>(int sizeOf, int alignOf, int initialCapacity, ref U allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) where U : unmanaged, AllocatorManager.IAllocator
{
var temp = new UnsafeList();
temp.Initialize(sizeOf, alignOf, initialCapacity, ref allocator, options);
return temp;
}
/// <summary>
/// Constructs a new container with the specified initial capacity and type of memory allocation.
/// </summary>
/// <param name="sizeOf">Size of element.</param>
/// <param name="alignOf">Alignment of element.</param>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
public UnsafeList(int sizeOf, int alignOf, int initialCapacity, AllocatorManager.AllocatorHandle allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) : this()
{
this = default;
Initialize(sizeOf, alignOf, initialCapacity, ref allocator, options);
}
/// <summary>
/// Constructs a new container with the specified initial capacity and type of memory allocation.
/// </summary>
/// <param name="sizeOf">Size of element.</param>
/// <param name="alignOf">Alignment of element.</param>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
public UnsafeList(int sizeOf, int alignOf, int initialCapacity, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) : this()
{
Allocator = allocator;
Ptr = null;
Length = 0;
Capacity = 0;
if (initialCapacity != 0)
{
SetCapacity(sizeOf, alignOf, initialCapacity);
}
if (options == NativeArrayOptions.ClearMemory
&& Ptr != null)
{
UnsafeUtility.MemClear(Ptr, Capacity * sizeOf);
}
}
/// <summary>
/// Creates a new container with the specified initial capacity and type of memory allocation.
/// </summary>
/// <param name="sizeOf">Size of element.</param>
/// <param name="alignOf">Alignment of element.</param>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
/// <returns>New initialized container.</returns>
public static UnsafeList* Create(int sizeOf, int alignOf, int initialCapacity, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory)
{
var handle = (AllocatorManager.AllocatorHandle)allocator;
UnsafeList* listData = AllocatorManager.Allocate<UnsafeList>(handle);
UnsafeUtility.MemClear(listData, UnsafeUtility.SizeOf<UnsafeList>());
listData->Allocator = allocator;
if (initialCapacity != 0)
{
listData->SetCapacity(sizeOf, alignOf, initialCapacity);
}
if (options == NativeArrayOptions.ClearMemory
&& listData->Ptr != null)
{
UnsafeUtility.MemClear(listData->Ptr, listData->Capacity * sizeOf);
}
return listData;
}
internal static UnsafeList* Create<U>(int sizeOf, int alignOf, int initialCapacity, ref U allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) where U : unmanaged, AllocatorManager.IAllocator
{
UnsafeList* listData = allocator.Allocate(default(UnsafeList), 1);
UnsafeUtility.MemClear(listData, UnsafeUtility.SizeOf<UnsafeList>());
listData->Allocator = allocator.Handle;
if (initialCapacity != 0)
{
listData->SetCapacity(ref allocator, sizeOf, alignOf, initialCapacity);
}
if (options == NativeArrayOptions.ClearMemory
&& listData->Ptr != null)
{
UnsafeUtility.MemClear(listData->Ptr, listData->Capacity * sizeOf);
}
return listData;
}
internal static void Destroy<U>(UnsafeList* listData, ref U allocator, int sizeOf, int alignOf) where U : unmanaged, AllocatorManager.IAllocator
{
CheckNull(listData);
listData->Dispose(ref allocator, sizeOf, alignOf);
allocator.Free(listData, UnsafeUtility.SizeOf<UnsafeList>(), UnsafeUtility.AlignOf<UnsafeList>(), 1);
}
/// <summary>
/// Destroys container.
/// </summary>
/// <param name="listData">Container to destroy.</param>
public static void Destroy(UnsafeList* listData)
{
CheckNull(listData);
var allocator = listData->Allocator;
listData->Dispose();
AllocatorManager.Free(allocator, listData);
}
/// <summary>
/// Reports whether container is empty.
/// </summary>
/// <value>True if this string has no characters or if the container has not been constructed.</value>
public bool IsEmpty => !IsCreated || Length == 0;
/// <summary>
/// Reports whether memory for the container is allocated.
/// </summary>
/// <value>True if this container object's internal storage has been allocated.</value>
/// <remarks>
/// Note that the container storage is not created if you use the default constructor. You must specify
/// at least an allocation type to construct a usable container.
///
/// *Warning:* the `IsCreated` property can't be used to determine whether a copy of a container is still valid.
/// If you dispose any copy of the container, the container storage is deallocated. However, the properties of
/// the other copies of the container (including the original) are not updated. As a result the `IsCreated` property
/// of the copies still return `true` even though the container storage has been deallocated.
/// </remarks>
public bool IsCreated => Ptr != null;
/// <summary>
/// Disposes of this container and deallocates its memory immediately.
/// </summary>
public void Dispose()
{
if (CollectionHelper.ShouldDeallocate(Allocator))
{
AllocatorManager.Free(Allocator, Ptr);
Allocator = AllocatorManager.Invalid;
}
Ptr = null;
Length = 0;
Capacity = 0;
}
internal void Dispose<U>(ref U allocator, int sizeOf, int alignOf) where U : unmanaged, AllocatorManager.IAllocator
{
allocator.Free(Ptr, sizeOf, alignOf, Length);
Ptr = null;
Length = 0;
Capacity = 0;
}
/// <summary>
/// Safely disposes of this container and deallocates its memory when the jobs that use it have completed.
/// </summary>
/// <remarks>You can call this function dispose of the container immediately after scheduling the job. Pass
/// the [JobHandle](https://docs.unity3d.com/ScriptReference/Unity.Jobs.JobHandle.html) returned by
/// the [Job.Schedule](https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJobExtensions.Schedule.html)
/// method using the `jobHandle` parameter so the job scheduler can dispose the container after all jobs
/// using it have run.</remarks>
/// <param name="inputDeps">The job handle or handles for any scheduled jobs that use this container.</param>
/// <returns>A new job handle containing the prior handles as well as the handle for the job that deletes
/// the container.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
if (CollectionHelper.ShouldDeallocate(Allocator))
{
var jobHandle = new UnsafeDisposeJob { Ptr = Ptr, Allocator = (Allocator)Allocator.Value }.Schedule(inputDeps);
Ptr = null;
Allocator = AllocatorManager.Invalid;
return jobHandle;
}
Ptr = null;
return inputDeps;
}
/// <summary>
/// Clears the container.
/// </summary>
/// <remarks>The container capacity remains unchanged.</remarks>
public void Clear()
{
Length = 0;
}
/// <summary>
/// Changes the list length, resizing if necessary.
/// </summary>
/// <param name="sizeOf">Size of element.</param>
/// <param name="alignOf">Alignment of element.</param>
/// <param name="length">The new length of the list.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
public void Resize(int sizeOf, int alignOf, int length, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory)
{
var oldLength = Length;
if (length > Capacity)
{
SetCapacity(sizeOf, alignOf, length);
}
Length = length;
if (options == NativeArrayOptions.ClearMemory
&& oldLength < length)
{
var num = length - oldLength;
byte* ptr = (byte*)Ptr;
UnsafeUtility.MemClear(ptr + oldLength * sizeOf, num * sizeOf);
}
}
/// <summary>
/// Changes the list length, resizing if necessary.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="length">The new length of the list.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
public void Resize<T>(int length, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) where T : struct
{
Resize(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), length, options);
}
void Realloc<U>(ref U allocator, int sizeOf, int alignOf, int capacity) where U : unmanaged, AllocatorManager.IAllocator
{
void* newPointer = null;
if (capacity > 0)
{
newPointer = allocator.Allocate(sizeOf, alignOf, capacity);
if (Capacity > 0)
{
var itemsToCopy = math.min(capacity, Capacity);
var bytesToCopy = itemsToCopy * sizeOf;
UnsafeUtility.MemCpy(newPointer, Ptr, bytesToCopy);
}
}
allocator.Free(Ptr, sizeOf, alignOf, Capacity);
Ptr = newPointer;
Capacity = capacity;
Length = math.min(Length, capacity);
}
void Realloc(int sizeOf, int alignOf, int capacity)
{
Realloc(ref Allocator, sizeOf, alignOf, capacity);
}
void SetCapacity<U>(ref U allocator, int sizeOf, int alignOf, int capacity) where U : unmanaged, AllocatorManager.IAllocator
{
var newCapacity = math.max(capacity, 64 / sizeOf);
newCapacity = math.ceilpow2(newCapacity);
if (newCapacity == Capacity)
{
return;
}
Realloc(ref allocator, sizeOf, alignOf, newCapacity);
}
void SetCapacity(int sizeOf, int alignOf, int capacity)
{
SetCapacity(ref Allocator, sizeOf, alignOf, capacity);
}
/// <summary>
/// Set the number of items that can fit in the container.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="capacity">The number of items that the container can hold before it resizes its internal storage.</param>
public void SetCapacity<T>(int capacity) where T : struct
{
SetCapacity(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), capacity);
}
/// <summary>
/// Sets the capacity to the actual number of elements in the container.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
public void TrimExcess<T>() where T : struct
{
if (Capacity != Length)
{
Realloc(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), Length);
}
}
/// <summary>
/// Searches for the specified element in list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="value"></param>
/// <returns>The zero-based index of the first occurrence element if found, otherwise returns -1.</returns>
public int IndexOf<T>(T value) where T : struct, IEquatable<T>
{
return NativeArrayExtensions.IndexOf<T, T>(Ptr, Length, value);
}
/// <summary>
/// Determines whether an element is in the list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="value"></param>
/// <returns>True, if element is found.</returns>
public bool Contains<T>(T value) where T : struct, IEquatable<T>
{
return IndexOf(value) != -1;
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="value">The value to be added at the end of the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddNoResize<T>(T value) where T : struct
{
CheckNoResizeHasEnoughCapacity(1);
UnsafeUtility.WriteArrayElement(Ptr, Length, value);
Length += 1;
}
void AddRangeNoResize(int sizeOf, void* ptr, int length)
{
CheckNoResizeHasEnoughCapacity(length);
void* dst = (byte*)Ptr + Length * sizeOf;
UnsafeUtility.MemCpy(dst, ptr, length * sizeOf);
Length += length;
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize<T>(void* ptr, int length) where T : struct
{
AddRangeNoResize(UnsafeUtility.SizeOf<T>(), ptr, length);
}
/// <summary>
/// Adds elements from a list to this list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="list">Other container to copy elements from.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize<T>(UnsafeList list) where T : struct
{
AddRangeNoResize(UnsafeUtility.SizeOf<T>(), list.Ptr, CollectionHelper.AssumePositive(list.Length));
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="value">The value to be added at the end of the list.</param>
/// <remarks>
/// If the list has reached its current capacity, it copies the original, internal array to
/// a new, larger array, and then deallocates the original.
/// </remarks>
public void Add<T>(T value) where T : struct
{
var idx = Length;
if (Length + 1 > Capacity)
{
Resize<T>(idx + 1);
}
else
{
Length += 1;
}
UnsafeUtility.WriteArrayElement(Ptr, idx, value);
}
void AddRange(int sizeOf, int alignOf, void* ptr, int length)
{
var idx = Length;
if (Length + length > Capacity)
{
Resize(sizeOf, alignOf, Length + length);
}
else
{
Length += length;
}
void* dst = (byte*)Ptr + idx * sizeOf;
UnsafeUtility.MemCpy(dst, ptr, length * sizeOf);
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
public void AddRange<T>(void* ptr, int length) where T : struct
{
AddRange(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), ptr, length);
}
/// <summary>
/// Adds elements from a list to this list.
/// </summary>
/// <remarks>
/// If the list has reached its current capacity, it copies the original, internal array to
/// a new, larger array, and then deallocates the original.
/// </remarks>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="list">Other container to copy elements from.</param>
public void AddRange<T>(UnsafeList list) where T : struct
{
AddRange(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), list.Ptr, list.Length);
}
void InsertRangeWithBeginEnd(int sizeOf, int alignOf, int begin, int end)
{
CheckBeginEnd(begin, end);
int items = end - begin;
if (items < 1)
{
return;
}
var oldLength = Length;
if (Length + items > Capacity)
{
Resize(sizeOf, alignOf, Length + items);
}
else
{
Length += items;
}
var itemsToCopy = oldLength - begin;
if (itemsToCopy < 1)
{
return;
}
var bytesToCopy = itemsToCopy * sizeOf;
unsafe
{
byte* ptr = (byte*)Ptr;
byte* dest = ptr + end * sizeOf;
byte* src = ptr + begin * sizeOf;
UnsafeUtility.MemMove(dest, src, bytesToCopy);
}
}
/// <summary>
/// Inserts a number of items into a container at a specified zero-based index.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="begin">The zero-based index at which the new elements should be inserted.</param>
/// <param name="end">The zero-based index just after where the elements should be removed.</param>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void InsertRangeWithBeginEnd<T>(int begin, int end) where T : struct
{
InsertRangeWithBeginEnd(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), begin, end);
}
void RemoveRangeSwapBackWithBeginEnd(int sizeOf, int begin, int end)
{
CheckBeginEnd(begin, end);
int itemsToRemove = end - begin;
if (itemsToRemove > 0)
{
int copyFrom = math.max(Length - itemsToRemove, end);
void* dst = (byte*)Ptr + begin * sizeOf;
void* src = (byte*)Ptr + copyFrom * sizeOf;
UnsafeUtility.MemCpy(dst, src, (Length - copyFrom) * sizeOf);
Length -= itemsToRemove;
}
}
/// <summary>
/// Truncates the list by replacing the item at the specified index with the last item in the list. The list
/// is shortened by one.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="index">The index of the item to delete.</param>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void RemoveAtSwapBack<T>(int index) where T : struct
{
RemoveRangeSwapBackWithBeginEnd<T>(index, index + 1);
}
/// <summary>
/// Truncates the list by replacing the item at the specified index range with the items from the end the list. The list
/// is shortened by number of elements in range.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="begin">The first index of the item to remove.</param>
/// <param name="end">The index past-the-last item to remove.</param>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void RemoveRangeSwapBackWithBeginEnd<T>(int begin, int end) where T : struct
{
RemoveRangeSwapBackWithBeginEnd(UnsafeUtility.SizeOf<T>(), begin, end);
}
void RemoveRangeWithBeginEnd(int sizeOf, int begin, int end)
{
CheckBeginEnd(begin, end);
int itemsToRemove = end - begin;
if (itemsToRemove > 0)
{
int copyFrom = math.min(begin + itemsToRemove, Length);
void* dst = (byte*)Ptr + begin * sizeOf;
void* src = (byte*)Ptr + copyFrom * sizeOf;
UnsafeUtility.MemCpy(dst, src, (Length - copyFrom) * sizeOf);
Length -= itemsToRemove;
}
}
/// <summary>
/// Truncates the list by removing the item at the specified index, and shifting all remaining items to replace removed item. The list
/// is shortened by one.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="index">The index of the item to delete.</param>
/// <remarks>
/// This method of removing item is useful only in case when list is ordered and user wants to preserve order
/// in list after removal In majority of cases is not important and user should use more performant `RemoveAtSwapBack`.
/// </remarks>
public void RemoveAt<T>(int index) where T : struct
{
RemoveRangeWithBeginEnd<T>(index, index + 1);
}
/// <summary>
/// Truncates the list by removing the items at the specified index range, and shifting all remaining items to replace removed items. The list
/// is shortened by number of elements in range.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="begin">The first index of the item to remove.</param>
/// <param name="end">The index past-the-last item to remove.</param>
/// <remarks>
/// This method of removing item(s) is useful only in case when list is ordered and user wants to preserve order
/// in list after removal In majority of cases is not important and user should use more performant `RemoveRangeSwapBackWithBeginEnd`.
/// </remarks>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void RemoveRangeWithBeginEnd<T>(int begin, int end) where T : struct
{
RemoveRangeWithBeginEnd(UnsafeUtility.SizeOf<T>(), begin, end);
}
/// <summary>
/// Returns parallel reader instance.
/// </summary>
/// <returns>Parallel reader instance.</returns>
public ParallelReader AsParallelReader()
{
return new ParallelReader(Ptr, Length);
}
/// <summary>
/// Implements parallel reader. Use AsParallelReader to obtain it from container.
/// </summary>
public unsafe struct ParallelReader
{
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public readonly void* Ptr;
/// <summary>
///
/// </summary>
public readonly int Length;
internal ParallelReader(void* ptr, int length)
{
Ptr = ptr;
Length = length;
}
/// <summary>
///
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="value"></param>
/// <returns></returns>
public int IndexOf<T>(T value) where T : struct, IEquatable<T>
{
return NativeArrayExtensions.IndexOf<T, T>(Ptr, Length, value);
}
/// <summary>
///
/// </summary>
/// <typeparam name="T"></typeparam>
/// <param name="value"></param>
/// <returns></returns>
public bool Contains<T>(T value) where T : struct, IEquatable<T>
{
return IndexOf(value) != -1;
}
}
/// <summary>
/// Returns parallel writer instance.
/// </summary>
/// <returns>Parallel writer instance.</returns>
public ParallelWriter AsParallelWriter()
{
return new ParallelWriter(Ptr, (UnsafeList*)UnsafeUtility.AddressOf(ref this));
}
/// <summary>
///
/// </summary>
public unsafe struct ParallelWriter
{
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public readonly void* Ptr;
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public UnsafeList* ListData;
internal unsafe ParallelWriter(void* ptr, UnsafeList* listData)
{
Ptr = ptr;
ListData = listData;
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="value">The value to be added at the end of the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddNoResize<T>(T value) where T : struct
{
var idx = Interlocked.Increment(ref ListData->Length) - 1;
ListData->CheckNoResizeHasEnoughCapacity(idx, 1);
UnsafeUtility.WriteArrayElement(Ptr, idx, value);
}
void AddRangeNoResize(int sizeOf, int alignOf, void* ptr, int length)
{
var idx = Interlocked.Add(ref ListData->Length, length) - length;
ListData->CheckNoResizeHasEnoughCapacity(idx, length);
void* dst = (byte*)Ptr + idx * sizeOf;
UnsafeUtility.MemCpy(dst, ptr, length * sizeOf);
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize<T>(void* ptr, int length) where T : struct
{
AddRangeNoResize(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), ptr, length);
}
/// <summary>
/// Adds elements from a list to this list.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="list">Other container to copy elements from.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize<T>(UnsafeList list) where T : struct
{
AddRangeNoResize(UnsafeUtility.SizeOf<T>(), UnsafeUtility.AlignOf<T>(), list.Ptr, list.Length);
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
internal static void CheckNull(void* listData)
{
if (listData == null)
{
throw new Exception("UnsafeList has yet to be created or has been destroyed!");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void CheckAllocator(Allocator a)
{
if (!CollectionHelper.ShouldDeallocate(a))
{
throw new Exception("UnsafeList is not initialized, it must be initialized with allocator before use.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
static void CheckAllocator(AllocatorManager.AllocatorHandle a)
{
if (!CollectionHelper.ShouldDeallocate(a))
{
throw new Exception("UnsafeList is not initialized, it must be initialized with allocator before use.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckBeginEnd(int begin, int end)
{
if (begin > end)
{
throw new ArgumentException($"Value for begin {begin} index must less or equal to end {end}.");
}
if (begin < 0)
{
throw new ArgumentOutOfRangeException($"Value for begin {begin} must be positive.");
}
if (begin > Length)
{
throw new ArgumentOutOfRangeException($"Value for begin {begin} is out of bounds.");
}
if (end > Length)
{
throw new ArgumentOutOfRangeException($"Value for end {end} is out of bounds.");
}
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckNoResizeHasEnoughCapacity(int length)
{
CheckNoResizeHasEnoughCapacity(length, Length);
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckNoResizeHasEnoughCapacity(int length, int index)
{
if (Capacity < index + length)
{
throw new Exception($"AddNoResize assumes that list capacity is sufficient (Capacity {Capacity}, Length {Length}), requested length {length}!");
}
}
}
/// <summary>
/// Provides extension methods for UnsafeList.
/// </summary>
public static class UnsafeListExtension
{
[BurstCompatible(GenericTypeArguments = new[] { typeof(int) })]
internal static ref UnsafeList ListData<T>(ref this UnsafeList<T> from) where T : unmanaged => ref UnsafeUtility.As<UnsafeList<T>, UnsafeList>(ref from);
/// <summary>
/// Sorts a list in ascending order.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="list">List to perform sort.</param>
public unsafe static void Sort<T>(this UnsafeList list) where T : unmanaged, IComparable<T>
{
list.Sort<T, NativeSortExtension.DefaultComparer<T>>(new NativeSortExtension.DefaultComparer<T>());
}
/// <summary>
/// Sorts a list using a custom comparison function.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <typeparam name="U">The comparer type.</typeparam>
/// <param name="list">List to perform sort.</param>
/// <param name="comp">A comparison function that indicates whether one element in the array is less than, equal to, or greater than another element.</param>
public unsafe static void Sort<T, U>(this UnsafeList list, U comp) where T : unmanaged where U : IComparer<T>
{
NativeSortExtension.IntroSort<T, U>(list.Ptr, list.Length, comp);
}
/// <summary>
/// Sorts the container in ascending order.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="container">The container to perform sort.</param>
/// <param name="inputDeps">The job handle or handles for any scheduled jobs that use this container.</param>
/// <returns>A new job handle containing the prior handles as well as the handle for the job that sorts
/// the container.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
[Obsolete("Instead call SortJob(this UnsafeList).Schedule(JobHandle). (RemovedAfter 2021-06-20)", false)]
public unsafe static JobHandle Sort<T>(this UnsafeList container, JobHandle inputDeps)
where T : unmanaged, IComparable<T>
{
return container.Sort<T, NativeSortExtension.DefaultComparer<T>>(new NativeSortExtension.DefaultComparer<T>(), inputDeps);
}
/// <summary>
/// Creates a job that will sort a list in ascending order.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="list">List to sort.</param>
/// <returns>The job that will sort the list. Scheduling the job is left to the user.</returns>
public unsafe static SortJob<T, NativeSortExtension.DefaultComparer<T>> SortJob<T>(this UnsafeList list)
where T : unmanaged, IComparable<T>
{
return NativeSortExtension.SortJob((T*)list.Ptr, list.Length, new NativeSortExtension.DefaultComparer<T>());
}
/// <summary>
/// Sorts the container using a custom comparison function.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <typeparam name="U">The comparer type.</typeparam>
/// <param name="container">The container to perform sort.</param>
/// <param name="comp">A comparison function that indicates whether one element in the array is less than, equal to, or greater than another element.</param>
/// <param name="inputDeps">The job handle or handles for any scheduled jobs that use this container.</param>
/// <returns>A new job handle containing the prior handles as well as the handle for the job that sorts
/// the container.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
[Obsolete("Instead call SortJob(this UnsafeList, U).Schedule(JobHandle). (RemovedAfter 2021-06-20)", false)]
public unsafe static JobHandle Sort<T, U>(this UnsafeList container, U comp, JobHandle inputDeps)
where T : unmanaged
where U : IComparer<T>
{
return NativeSortExtension.Sort((T*)container.Ptr, container.Length, comp, inputDeps);
}
/// <summary>
/// Creates a job that will sort a list using a comparison function.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <typeparam name="U">The comparer type.</typeparam>
/// <param name="list">List to sort.</param>
/// <param name="comp">A comparison function that indicates whether one element in the array is less than, equal to, or greater than another element.</param>
/// <returns>The job that will sort the list. Scheduling the job is left to the user.</returns>
public unsafe static SortJob<T, U> SortJob<T, U>(this UnsafeList list, U comp)
where T : unmanaged
where U : IComparer<T>
{
return NativeSortExtension.SortJob((T*)list.Ptr, list.Length, comp);
}
/// <summary>
/// Binary search for the value in the sorted container.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <param name="container">The container to perform search.</param>
/// <param name="value">The value to search for.</param>
/// <returns>Positive index of the specified value if value is found. Otherwise bitwise complement of index of first greater value.</returns>
/// <remarks>Array must be sorted, otherwise value searched might not be found even when it is in array. IComparer corresponds to IComparer used by sort.</remarks>
public static int BinarySearch<T>(this UnsafeList container, T value)
where T : unmanaged, IComparable<T>
{
return container.BinarySearch(value, new NativeSortExtension.DefaultComparer<T>());
}
/// <summary>
/// Binary search for the value in the sorted container.
/// </summary>
/// <typeparam name="T">Source type of elements</typeparam>
/// <typeparam name="U">The comparer type.</typeparam>
/// <param name="container">The container to perform search.</param>
/// <param name="value">The value to search for.</param>
/// <param name="comp">A comparison function that indicates whether one element in the array is less than, equal to, or greater than another element.</param>
/// <returns>Positive index of the specified value if value is found. Otherwise bitwise complement of index of first greater value.</returns>
/// <remarks>Array must be sorted, otherwise value searched might not be found even when it is in array. IComparer corresponds to IComparer used by sort.</remarks>
public unsafe static int BinarySearch<T, U>(this UnsafeList container, T value, U comp)
where T : unmanaged
where U : IComparer<T>
{
return NativeSortExtension.BinarySearch((T*)container.Ptr, container.Length, value, comp);
}
}
/// <summary>
/// An unmanaged, resizable list, without any thread safety check features.
/// </summary>
[DebuggerDisplay("Length = {Length}, Capacity = {Capacity}, IsCreated = {IsCreated}, IsEmpty = {IsEmpty}")]
[DebuggerTypeProxy(typeof(UnsafePtrListDebugView))]
[Obsolete("Untyped UnsafePtrList is deprecated, please use UnsafePtrList<T> instead. (RemovedAfter 2021-05-18)", false)]
public unsafe struct UnsafePtrList
: INativeDisposable
, INativeList<IntPtr>
, IEnumerable<IntPtr> // Used by collection initializers.
{
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public readonly void** Ptr;
/// <summary>
///
/// </summary>
public readonly int length;
public readonly int unused;
/// <summary>
///
/// </summary>
public readonly int capacity;
/// <summary>
///
/// </summary>
public readonly AllocatorManager.AllocatorHandle Allocator;
/// <summary>
///
/// </summary>
public int Length { get { return length; } set { } }
/// <summary>
///
/// </summary>
public int Capacity { get { return capacity; } set { } }
/// <summary>
///
/// </summary>
/// <param name="index"></param>
/// <returns></returns>
public IntPtr this[int index]
{
get { return new IntPtr(Ptr[index]); }
set { Ptr[index] = (void*)value; }
}
/// <summary>
///
/// </summary>
/// <param name="index"></param>
/// <returns></returns>
public ref IntPtr ElementAt(int index)
{
return ref ((IntPtr*)Ptr)[index];
}
/// <summary>
/// Constructs list as view into memory.
/// </summary>
/// <param name="ptr"></param>
/// <param name="length"></param>
public unsafe UnsafePtrList(void** ptr, int length) : this()
{
Ptr = ptr;
this.length = length;
this.capacity = length;
Allocator = AllocatorManager.None;
}
/// <summary>
/// Constructs a new list using the specified type of memory allocation.
/// </summary>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
/// <remarks>The list initially has a capacity of one. To avoid reallocating memory for the list, specify
/// sufficient capacity up front.</remarks>
public unsafe UnsafePtrList(int initialCapacity, AllocatorManager.AllocatorHandle allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) : this()
{
Ptr = null;
length = 0;
capacity = 0;
Allocator = AllocatorManager.None;
var sizeOf = IntPtr.Size;
this.ListData() = new UnsafeList(sizeOf, sizeOf, initialCapacity, allocator, options);
}
/// <summary>
/// Constructs a new list using the specified type of memory allocation.
/// </summary>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
/// <remarks>The list initially has a capacity of one. To avoid reallocating memory for the list, specify
/// sufficient capacity up front.</remarks>
public unsafe UnsafePtrList(int initialCapacity, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory) : this()
{
Ptr = null;
length = 0;
capacity = 0;
Allocator = AllocatorManager.None;
var sizeOf = IntPtr.Size;
this.ListData() = new UnsafeList(sizeOf, sizeOf, initialCapacity, allocator, options);
}
/// <summary>
///
/// </summary>
/// <param name="ptr"></param>
/// <param name="length"></param>
/// <returns>New initialized container.</returns>
public static UnsafePtrList* Create(void** ptr, int length)
{
UnsafePtrList* listData = AllocatorManager.Allocate<UnsafePtrList>(AllocatorManager.Persistent);
*listData = new UnsafePtrList(ptr, length);
return listData;
}
/// <summary>
/// Creates a new list with the specified initial capacity and type of memory allocation.
/// </summary>
/// <param name="initialCapacity">The initial capacity of the list. If the list grows larger than its capacity,
/// the internal array is copied to a new, larger array.</param>
/// <param name="allocator">A member of the
/// [Unity.Collections.Allocator](https://docs.unity3d.com/ScriptReference/Unity.Collections.Allocator.html) enumeration.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
/// <returns>New initialized container.</returns>
public static UnsafePtrList* Create(int initialCapacity, Allocator allocator, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory)
{
UnsafePtrList* listData = AllocatorManager.Allocate<UnsafePtrList>(allocator);
*listData = new UnsafePtrList(initialCapacity, allocator, options);
return listData;
}
/// <summary>
/// Destroys list.
/// </summary>
/// <param name="listData">Container to destroy.</param>
public static void Destroy(UnsafePtrList* listData)
{
UnsafeList.CheckNull(listData);
var allocator = listData->ListData().Allocator.Value == AllocatorManager.Invalid.Value
? AllocatorManager.Persistent
: listData->ListData().Allocator
;
listData->Dispose();
AllocatorManager.Free(allocator, listData);
}
/// <summary>
/// Reports whether container is empty.
/// </summary>
/// <value>True if this string has no characters or if the container has not been constructed.</value>
public bool IsEmpty => !IsCreated || Length == 0;
/// <summary>
/// Reports whether memory for the container is allocated.
/// </summary>
/// <value>True if this container object's internal storage has been allocated.</value>
/// <remarks>
/// Note that the container storage is not created if you use the default constructor. You must specify
/// at least an allocation type to construct a usable container.
///
/// *Warning:* the `IsCreated` property can't be used to determine whether a copy of a container is still valid.
/// If you dispose any copy of the container, the container storage is deallocated. However, the properties of
/// the other copies of the container (including the original) are not updated. As a result the `IsCreated` property
/// of the copies still return `true` even though the container storage has been deallocated.
/// </remarks>
public bool IsCreated => Ptr != null;
/// <summary>
/// Disposes of this container and deallocates its memory immediately.
/// </summary>
public void Dispose()
{
this.ListData().Dispose();
}
/// <summary>
/// Safely disposes of this container and deallocates its memory when the jobs that use it have completed.
/// </summary>
/// <remarks>You can call this function dispose of the container immediately after scheduling the job. Pass
/// the [JobHandle](https://docs.unity3d.com/ScriptReference/Unity.Jobs.JobHandle.html) returned by
/// the [Job.Schedule](https://docs.unity3d.com/ScriptReference/Unity.Jobs.IJobExtensions.Schedule.html)
/// method using the `jobHandle` parameter so the job scheduler can dispose the container after all jobs
/// using it have run.</remarks>
/// <param name="inputDeps">The job handle or handles for any scheduled jobs that use this container.</param>
/// <returns>A new job handle containing the prior handles as well as the handle for the job that deletes
/// the container.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
return this.ListData().Dispose(inputDeps);
}
/// <summary>
/// Clears the list.
/// </summary>
/// <remarks>List Capacity remains unchanged.</remarks>
public void Clear()
{
this.ListData().Clear();
}
/// <summary>
/// Changes the list length, resizing if necessary.
/// </summary>
/// <param name="length">The new length of the list.</param>
/// <param name="options">Memory should be cleared on allocation or left uninitialized.</param>
public void Resize(int length, NativeArrayOptions options = NativeArrayOptions.UninitializedMemory)
{
this.ListData().Resize<IntPtr>(length, options);
}
/// <summary>
/// Set the number of items that can fit in the list.
/// </summary>
/// <param name="capacity">The number of items that the list can hold before it resizes its internal storage.</param>
public void SetCapacity(int capacity)
{
this.ListData().SetCapacity<IntPtr>(capacity);
}
/// <summary>
/// Sets the capacity to the actual number of elements in the container.
/// </summary>
public void TrimExcess()
{
this.ListData().TrimExcess<IntPtr>();
}
/// <summary>
/// Searches for the specified element in list.
/// </summary>
/// <param name="value"></param>
/// <returns>The zero-based index of the first occurrence element if found, otherwise returns -1.</returns>
public int IndexOf(void* value)
{
for (int i = 0; i < Length; ++i)
{
if (Ptr[i] == value) return i;
}
return -1;
}
/// <summary>
/// Determines whether an element is in the list.
/// </summary>
/// <param name="value"></param>
/// <returns>True, if element is found.</returns>
public bool Contains(void* value)
{
return IndexOf(value) != -1;
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <param name="value">The value to be added at the end of the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddNoResize(void* value)
{
this.ListData().AddNoResize((IntPtr)value);
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize(void** ptr, int length)
{
this.ListData().AddRangeNoResize<IntPtr>(ptr, length);
}
/// <summary>
/// Adds elements from a list to this list.
/// </summary>
/// <param name="list">Other container to copy elements from.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize(UnsafePtrList list)
{
this.ListData().AddRangeNoResize<IntPtr>(list.Ptr, list.Length);
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <param name="value">The struct to be added at the end of the list.</param>
public void Add(in IntPtr value)
{
this.ListData().Add(value);
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <param name="value">The struct to be added at the end of the list.</param>
public void Add(void* value)
{
this.ListData().Add((IntPtr)value);
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
public void AddRange(void* ptr, int length)
{
this.ListData().AddRange<IntPtr>(ptr, length);
}
/// <summary>
/// Adds the elements of a UnsafePtrList to this list.
/// </summary>
/// <param name="list">Other container to copy elements from.</param>
public void AddRange(UnsafePtrList list)
{
this.ListData().AddRange<IntPtr>(list.ListData());
}
/// <summary>
/// Inserts a number of items into a container at a specified zero-based index.
/// </summary>
/// <param name="begin">The zero-based index at which the new elements should be inserted.</param>
/// <param name="end">The zero-based index just after where the elements should be removed.</param>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void InsertRangeWithBeginEnd(int begin, int end)
{
this.ListData().InsertRangeWithBeginEnd<IntPtr>(begin, end);
}
/// <summary>
/// Truncates the list by replacing the item at the specified index with the last item in the list. The list
/// is shortened by one.
/// </summary>
/// <param name="index">The index of the item to delete.</param>
public void RemoveAtSwapBack(int index)
{
this.ListData().RemoveAtSwapBack<IntPtr>(index);
}
/// <summary>
/// Truncates the list by replacing the item at the specified index range with the items from the end the list. The list
/// is shortened by number of elements in range.
/// </summary>
/// <param name="begin">The first index of the item to remove.</param>
/// <param name="end">The index past-the-last item to remove.</param>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void RemoveRangeSwapBackWithBeginEnd(int begin, int end)
{
this.ListData().RemoveRangeSwapBackWithBeginEnd<IntPtr>(begin, end);
}
/// <summary>
/// Truncates the list by removing the item at the specified index, and shifting all remaining items to replace removed item. The list
/// is shortened by one.
/// </summary>
/// <param name="index">The index of the item to delete.</param>
/// <remarks>
/// This method of removing item is useful only in case when list is ordered and user wants to preserve order
/// in list after removal In majority of cases is not important and user should use more performant `RemoveAtSwapBack`.
/// </remarks>
public void RemoveAt(int index)
{
this.ListData().RemoveAt<IntPtr>(index);
}
/// <summary>
/// Truncates the list by removing the items at the specified index range, and shifting all remaining items to replace removed items. The list
/// is shortened by number of elements in range.
/// </summary>
/// <param name="begin">The first index of the item to remove.</param>
/// <param name="end">The index past-the-last item to remove.</param>
/// <remarks>
/// This method of removing item(s) is useful only in case when list is ordered and user wants to preserve order
/// in list after removal In majority of cases is not important and user should use more performant `RemoveRangeSwapBackWithBeginEnd`.
/// </remarks>
/// <exception cref="ArgumentException">Thrown if end argument is less than begin argument.</exception>
/// <exception cref="ArgumentOutOfRangeException">Thrown if begin or end arguments are not positive or out of bounds.</exception>
public void RemoveRangeWithBeginEnd(int begin, int end)
{
this.ListData().RemoveRangeWithBeginEnd<IntPtr>(begin, end);
}
/// <summary>
/// This method is not implemented. It will throw NotImplementedException if it is used.
/// </summary>
/// <remarks>Use Enumerator GetEnumerator() instead.</remarks>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. It will throw NotImplementedException if it is used.
/// </summary>
/// <remarks>Use Enumerator GetEnumerator() instead.</remarks>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<IntPtr> IEnumerable<IntPtr>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// Returns parallel reader instance.
/// </summary>
/// <returns>Parallel reader instance.</returns>
public ParallelReader AsParallelReader()
{
return new ParallelReader(Ptr, Length);
}
/// <summary>
/// Implements parallel reader. Use AsParallelReader to obtain it from container.
/// </summary>
public unsafe struct ParallelReader
{
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public readonly void** Ptr;
/// <summary>
///
/// </summary>
public readonly int Length;
internal ParallelReader(void** ptr, int length)
{
Ptr = ptr;
Length = length;
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
public int IndexOf(void* value)
{
for (int i = 0; i < Length; ++i)
{
if (Ptr[i] == value) return i;
}
return -1;
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
public bool Contains(void* value)
{
return IndexOf(value) != -1;
}
}
/// <summary>
/// Returns parallel writer instance.
/// </summary>
/// <returns>Parallel writer instance.</returns>
public ParallelWriter AsParallelWriter()
{
return new ParallelWriter(Ptr, (UnsafeList*)UnsafeUtility.AddressOf(ref this));
}
/// <summary>
///
/// </summary>
public unsafe struct ParallelWriter
{
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public readonly void* Ptr;
/// <summary>
///
/// </summary>
[NativeDisableUnsafePtrRestriction]
public UnsafeList* ListData;
internal unsafe ParallelWriter(void* ptr, UnsafeList* listData)
{
Ptr = ptr;
ListData = listData;
}
/// <summary>
/// Adds an element to the list.
/// </summary>
/// <param name="value">The value to be added at the end of the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddNoResize(void* value)
{
ListData->AddNoResize((IntPtr)value);
}
/// <summary>
/// Adds elements from a buffer to this list.
/// </summary>
/// <param name="ptr">A pointer to the buffer.</param>
/// <param name="length">The number of elements to add to the list.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize(void** ptr, int length)
{
ListData->AddRangeNoResize<IntPtr>(ptr, length);
}
/// <summary>
/// Adds elements from a list to this list.
/// </summary>
/// <param name="list">Other container to copy elements from.</param>
/// <remarks>
/// If the list has reached its current capacity, internal array won't be resized, and exception will be thrown.
/// </remarks>
public void AddRangeNoResize(UnsafePtrList list)
{
ListData->AddRangeNoResize<IntPtr>(list.Ptr, list.Length);
}
}
}
internal static class UnsafePtrListExtensions
{
public static ref UnsafeList ListData(ref this UnsafePtrList from) => ref UnsafeUtility.As<UnsafePtrList, UnsafeList>(ref from);
}
internal sealed class UnsafePtrListDebugView
{
UnsafePtrList Data;
public UnsafePtrListDebugView(UnsafePtrList data)
{
Data = data;
}
public unsafe IntPtr[] Items
{
get
{
IntPtr[] result = new IntPtr[Data.Length];
for (var i = 0; i < result.Length; ++i)
{
result[i] = (IntPtr)Data.Ptr[i];
}
return result;
}
}
}
[Obsolete("This storage will no longer be used. (RemovedAfter 2021-06-01)")]
sealed class WordStorageDebugView
{
WordStorage m_wordStorage;
public WordStorageDebugView(WordStorage wordStorage)
{
m_wordStorage = wordStorage;
}
public FixedString128Bytes[] Table
{
get
{
var table = new FixedString128Bytes[m_wordStorage.Entries];
for (var i = 0; i < m_wordStorage.Entries; ++i)
m_wordStorage.GetFixedString(i, ref table[i]);
return table;
}
}
}
[Obsolete("This storage will no longer be used. (RemovedAfter 2021-06-01)")]
sealed class WordStorageStatic
{
private WordStorageStatic()
{
}
public struct Thing
{
public WordStorage Data;
}
public static Thing Ref = default;
}
/// <summary>
///
/// </summary>
[Obsolete("This storage will no longer be used. (RemovedAfter 2021-06-01)")]
[DebuggerTypeProxy(typeof(WordStorageDebugView))]
public struct WordStorage
{
struct Entry
{
public int offset;
public int length;
}
NativeArray<byte> buffer; // all the UTF-8 encoded bytes in one place
NativeArray<Entry> entry; // one offset for each text in "buffer"
NativeParallelMultiHashMap<int, int> hash; // from string hash to table entry
int chars; // bytes in buffer allocated so far
int entries; // number of strings allocated so far
/// <summary>
/// For internal use only.
/// </summary>
[NotBurstCompatible /* Deprecated */]
public static ref WordStorage Instance
{
get
{
Initialize();
return ref WordStorageStatic.Ref.Data;
}
}
const int kMaxEntries = 16 << 10;
const int kMaxChars = kMaxEntries * 128;
/// <summary>
///
/// </summary>
public const int kMaxCharsPerEntry = 4096;
/// <summary>
///
/// </summary>
public int Entries => entries;
/// <summary>
///
/// </summary>
[NotBurstCompatible /* Deprecated */]
public static void Initialize()
{
if (WordStorageStatic.Ref.Data.buffer.IsCreated)
return;
WordStorageStatic.Ref.Data.buffer = new NativeArray<byte>(kMaxChars, Allocator.Persistent);
WordStorageStatic.Ref.Data.entry = new NativeArray<Entry>(kMaxEntries, Allocator.Persistent);
WordStorageStatic.Ref.Data.hash = new NativeParallelMultiHashMap<int, int>(kMaxEntries, Allocator.Persistent);
Clear();
#if !UNITY_DOTSRUNTIME
// Free storage on domain unload, which happens when iterating on the Entities module a lot.
AppDomain.CurrentDomain.DomainUnload += (_, __) => { Shutdown(); };
// There is no domain unload in player builds, so we must be sure to shutdown when the process exits.
AppDomain.CurrentDomain.ProcessExit += (_, __) => { Shutdown(); };
#endif
}
/// <summary>
///
/// </summary>
[NotBurstCompatible /* Deprecated */]
public static void Shutdown()
{
if (!WordStorageStatic.Ref.Data.buffer.IsCreated)
return;
WordStorageStatic.Ref.Data.buffer.Dispose();
WordStorageStatic.Ref.Data.entry.Dispose();
WordStorageStatic.Ref.Data.hash.Dispose();
WordStorageStatic.Ref.Data = default;
}
/// <summary>
///
/// </summary>
[NotBurstCompatible /* Deprecated */]
public static void Clear()
{
Initialize();
WordStorageStatic.Ref.Data.chars = 0;
WordStorageStatic.Ref.Data.entries = 0;
WordStorageStatic.Ref.Data.hash.Clear();
var temp = new FixedString32Bytes();
WordStorageStatic.Ref.Data.GetOrCreateIndex(ref temp); // make sure that Index=0 means empty string
}
/// <summary>
///
/// </summary>
[NotBurstCompatible /* Deprecated */]
public static void Setup()
{
Clear();
}
/// <summary>
///
/// </summary>
/// <param name="index"></param>
/// <param name="temp"></param>
/// <typeparam name="T"></typeparam>
public unsafe void GetFixedString<T>(int index, ref T temp)
where T : IUTF8Bytes, INativeList<byte>
{
Assert.IsTrue(index < entries);
var e = entry[index];
Assert.IsTrue(e.length <= kMaxCharsPerEntry);
temp.Length = e.length;
UnsafeUtility.MemCpy(temp.GetUnsafePtr(), (byte*)buffer.GetUnsafePtr() + e.offset, temp.Length);
}
/// <summary>
///
/// </summary>
/// <param name="h"></param>
/// <param name="temp"></param>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public int GetIndexFromHashAndFixedString<T>(int h, ref T temp)
where T : IUTF8Bytes, INativeList<byte>
{
Assert.IsTrue(temp.Length <= kMaxCharsPerEntry); // about one printed page of text
int itemIndex;
NativeParallelMultiHashMapIterator<int> iter;
if (hash.TryGetFirstValue(h, out itemIndex, out iter))
{
do
{
var e = entry[itemIndex];
Assert.IsTrue(e.length <= kMaxCharsPerEntry);
if (e.length == temp.Length)
{
int matches;
for (matches = 0; matches < e.length; ++matches)
if (temp[matches] != buffer[e.offset + matches])
break;
if (matches == temp.Length)
return itemIndex;
}
} while (hash.TryGetNextValue(out itemIndex, ref iter));
}
return -1;
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public bool Contains<T>(ref T value)
where T : IUTF8Bytes, INativeList<byte>
{
int h = value.GetHashCode();
return GetIndexFromHashAndFixedString(h, ref value) != -1;
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <returns></returns>
[NotBurstCompatible /* Deprecated */]
public unsafe bool Contains(string value)
{
FixedString512Bytes temp = value;
return Contains(ref temp);
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public int GetOrCreateIndex<T>(ref T value)
where T : IUTF8Bytes, INativeList<byte>
{
int h = value.GetHashCode();
var itemIndex = GetIndexFromHashAndFixedString(h, ref value);
if (itemIndex != -1)
return itemIndex;
Assert.IsTrue(entries < kMaxEntries);
Assert.IsTrue(chars + value.Length <= kMaxChars);
var o = chars;
var l = (ushort)value.Length;
for (var i = 0; i < l; ++i)
buffer[chars++] = value[i];
entry[entries] = new Entry { offset = o, length = l };
hash.Add(h, entries);
return entries++;
}
}
/// <summary>
///
/// </summary>
/// <remarks>
/// A "Words" is an integer that refers to 4,096 or fewer chars of UTF-16 text in a global storage blob.
/// Each should refer to *at most* about one printed page of text.
///
/// If you need more text, consider using one Words struct for each printed page's worth.
///
/// Each Words instance that you create is stored in a single, internally-managed WordStorage object,
/// which can hold up to 16,384 Words entries. Once added, the entries in WordStorage cannot be modified
/// or removed.
/// </remarks>
[Obsolete("This storage will no longer be used. (RemovedAfter 2021-06-01)")]
public struct Words
{
int Index;
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <typeparam name="T"></typeparam>
public void ToFixedString<T>(ref T value)
where T : IUTF8Bytes, INativeList<byte>
{
WordStorage.Instance.GetFixedString(Index, ref value);
}
/// <summary>
///
/// </summary>
/// <returns></returns>
public override string ToString()
{
FixedString512Bytes temp = default;
ToFixedString(ref temp);
return temp.ToString();
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <typeparam name="T"></typeparam>
public void SetFixedString<T>(ref T value)
where T : IUTF8Bytes, INativeList<byte>
{
Index = WordStorage.Instance.GetOrCreateIndex(ref value);
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
public unsafe void SetString(string value)
{
FixedString512Bytes temp = value;
SetFixedString(ref temp);
}
}
/// <summary>
///
/// </summary>
/// <remarks>
/// A "NumberedWords" is a "Words", plus possibly a string of leading zeroes, followed by
/// possibly a positive integer.
/// The zeroes and integer aren't stored centrally as a string, they're stored as an int.
/// Therefore, 1,000,000 items with names from FooBarBazBifBoo000000 to FooBarBazBifBoo999999
/// Will cost 8MB + a single copy of "FooBarBazBifBoo", instead of ~48MB.
/// They say that this is a thing, too.
/// </remarks>
[Obsolete("This storage will no longer be used. (RemovedAfter 2021-06-01)")]
public struct NumberedWords
{
int Index;
int Suffix;
const int kPositiveNumericSuffixShift = 0;
const int kPositiveNumericSuffixBits = 29;
const int kMaxPositiveNumericSuffix = (1 << kPositiveNumericSuffixBits) - 1;
const int kPositiveNumericSuffixMask = (1 << kPositiveNumericSuffixBits) - 1;
const int kLeadingZeroesShift = 29;
const int kLeadingZeroesBits = 3;
const int kMaxLeadingZeroes = (1 << kLeadingZeroesBits) - 1;
const int kLeadingZeroesMask = (1 << kLeadingZeroesBits) - 1;
int LeadingZeroes
{
get => (Suffix >> kLeadingZeroesShift) & kLeadingZeroesMask;
set
{
Suffix &= ~(kLeadingZeroesMask << kLeadingZeroesShift);
Suffix |= (value & kLeadingZeroesMask) << kLeadingZeroesShift;
}
}
int PositiveNumericSuffix
{
get => (Suffix >> kPositiveNumericSuffixShift) & kPositiveNumericSuffixMask;
set
{
Suffix &= ~(kPositiveNumericSuffixMask << kPositiveNumericSuffixShift);
Suffix |= (value & kPositiveNumericSuffixMask) << kPositiveNumericSuffixShift;
}
}
bool HasPositiveNumericSuffix => PositiveNumericSuffix != 0;
[NotBurstCompatible /* Deprecated */]
string NewString(char c, int count)
{
char[] temp = new char[count];
for (var i = 0; i < count; ++i)
temp[i] = c;
return new string(temp, 0, count);
}
/// <summary>
///
/// </summary>
/// <param name="result"></param>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
[NotBurstCompatible /* Deprecated */]
public int ToFixedString<T>(ref T result)
where T : IUTF8Bytes, INativeList<byte>
{
unsafe
{
var positiveNumericSuffix = PositiveNumericSuffix;
var leadingZeroes = LeadingZeroes;
WordStorage.Instance.GetFixedString(Index, ref result);
if (positiveNumericSuffix == 0 && leadingZeroes == 0)
return 0;
// print the numeric suffix, if any, backwards, as ASCII, to a little buffer.
const int maximumDigits = kMaxLeadingZeroes + 10;
var buffer = stackalloc byte[maximumDigits];
var firstDigit = maximumDigits;
while (positiveNumericSuffix > 0)
{
buffer[--firstDigit] = (byte)('0' + positiveNumericSuffix % 10);
positiveNumericSuffix /= 10;
}
while (leadingZeroes-- > 0)
buffer[--firstDigit] = (byte)'0';
// make space in the output for leading zeroes if any, followed by the positive numeric index if any.
var dest = result.GetUnsafePtr() + result.Length;
result.Length += maximumDigits - firstDigit;
while (firstDigit < maximumDigits)
*dest++ = buffer[firstDigit++];
return 0;
}
}
/// <summary>
///
/// </summary>
/// <returns></returns>
[NotBurstCompatible /* Deprecated */]
public override string ToString()
{
FixedString512Bytes temp = default;
ToFixedString(ref temp);
return temp.ToString();
}
bool IsDigit(byte b)
{
return b >= '0' && b <= '9';
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
/// <typeparam name="T"></typeparam>
[NotBurstCompatible /* Deprecated */]
public void SetString<T>(ref T value)
where T : IUTF8Bytes, INativeList<byte>
{
int beginningOfDigits = value.Length;
// as long as there are digits at the end,
// look back for more digits.
while (beginningOfDigits > 0 && IsDigit(value[beginningOfDigits - 1]))
--beginningOfDigits;
// as long as the first digit is a zero, it's not the beginning of the positive integer - it's a leading zero.
var beginningOfPositiveNumericSuffix = beginningOfDigits;
while (beginningOfPositiveNumericSuffix < value.Length && value[beginningOfPositiveNumericSuffix] == '0')
++beginningOfPositiveNumericSuffix;
// now we know where the leading zeroes begin, and then where the positive integer begins after them.
// but if there are too many leading zeroes to encode, the excess ones become part of the string.
var leadingZeroes = beginningOfPositiveNumericSuffix - beginningOfDigits;
if (leadingZeroes > kMaxLeadingZeroes)
{
var excessLeadingZeroes = leadingZeroes - kMaxLeadingZeroes;
beginningOfDigits += excessLeadingZeroes;
leadingZeroes -= excessLeadingZeroes;
}
// if there is a positive integer after the zeroes, here's where we compute it and store it for later.
PositiveNumericSuffix = 0;
{
int number = 0;
for (var i = beginningOfPositiveNumericSuffix; i < value.Length; ++i)
{
number *= 10;
number += value[i] - '0';
}
// an intrepid user may attempt to encode a positive integer with 20 digits or something.
// they are rewarded with a string that is encoded wholesale without any optimizations.
if (number <= kMaxPositiveNumericSuffix)
PositiveNumericSuffix = number;
else
{
beginningOfDigits = value.Length;
leadingZeroes = 0; // and your dog Toto, too.
}
}
// set the leading zero count in the Suffix member.
LeadingZeroes = leadingZeroes;
// truncate the string, if there were digits at the end that we encoded.
var truncated = value;
int length = truncated.Length;
if (beginningOfDigits != truncated.Length)
truncated.Length = beginningOfDigits;
// finally, set the string to its index in the global string blob thing.
unsafe
{
Index = WordStorage.Instance.GetOrCreateIndex(ref truncated);
}
}
/// <summary>
///
/// </summary>
/// <param name="value"></param>
[NotBurstCompatible /* Deprecated */]
public void SetString(string value)
{
FixedString512Bytes temp = value;
SetString(ref temp);
}
}
[Obsolete("UntypedUnsafeHashMap is renamed to UntypedUnsafeParallelHashMap. (UnityUpgradable) -> UntypedUnsafeParallelHashMap", false)]
[StructLayout(LayoutKind.Sequential)]
public unsafe struct UntypedUnsafeHashMap
{
#pragma warning disable 169
[NativeDisableUnsafePtrRestriction]
UnsafeParallelHashMapData* m_Buffer;
AllocatorManager.AllocatorHandle m_AllocatorLabel;
#pragma warning restore 169
}
[Obsolete("UnsafeHashMap is renamed to UnsafeParallelHashMap. (UnityUpgradable) -> UnsafeParallelHashMap<TKey, TValue>", false)]
[StructLayout(LayoutKind.Sequential)]
public unsafe struct UnsafeHashMap<TKey, TValue>
: INativeDisposable
, IEnumerable<KeyValue<TKey, TValue>> // Used by collection initializers.
where TKey : struct, IEquatable<TKey>
where TValue : struct
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeParallelHashMapData* m_Buffer;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
/// <summary>
/// Initializes and returns an instance of UnsafeHashMap.
/// </summary>
/// <param name="capacity">The number of key-value pairs that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public UnsafeHashMap(int capacity, AllocatorManager.AllocatorHandle allocator)
{
CollectionHelper.CheckIsUnmanaged<TKey>();
CollectionHelper.CheckIsUnmanaged<TValue>();
m_AllocatorLabel = allocator;
// Bucket size if bigger to reduce collisions
UnsafeParallelHashMapData.AllocateHashMap<TKey, TValue>(capacity, capacity * 2, allocator, out m_Buffer);
Clear();
}
/// <summary>
/// Whether this hash map is empty.
/// </summary>
/// <value>True if this hash map is empty or the hash map has not been constructed.</value>
public bool IsEmpty => !IsCreated || UnsafeParallelHashMapData.IsEmpty(m_Buffer);
/// <summary>
/// The current number of key-value pairs in this hash map.
/// </summary>
/// <returns>The current number of key-value pairs in this hash map.</returns>
public int Count() => UnsafeParallelHashMapData.GetCount(m_Buffer);
/// <summary>
/// The number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than the current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity
{
get
{
UnsafeParallelHashMapData* data = m_Buffer;
return data->keyCapacity;
}
set
{
UnsafeParallelHashMapData* data = m_Buffer;
UnsafeParallelHashMapData.ReallocateHashMap<TKey, TValue>(data, value, UnsafeParallelHashMapData.GetBucketSize(value), m_AllocatorLabel);
}
}
/// <summary>
/// Removes all key-value pairs.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear()
{
UnsafeParallelHashMapBase<TKey, TValue>.Clear(m_Buffer);
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method returns false without modifying the hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <returns>True if the key-value pair was added.</returns>
public bool TryAdd(TKey key, TValue item)
{
return UnsafeParallelHashMapBase<TKey, TValue>.TryAdd(m_Buffer, key, item, false, m_AllocatorLabel);
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method throws without modifying the hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <exception cref="ArgumentException">Thrown if the key was already present.</exception>
public void Add(TKey key, TValue item)
{
TryAdd(key, item);
}
/// <summary>
/// Removes a key-value pair.
/// </summary>
/// <param name="key">The key to remove.</param>
/// <returns>True if a key-value pair was removed.</returns>
public bool Remove(TKey key)
{
return UnsafeParallelHashMapBase<TKey, TValue>.Remove(m_Buffer, key, false) != 0;
}
/// <summary>
/// Returns the value associated with a key.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <param name="item">Outputs the value associated with the key. Outputs default if the key was not present.</param>
/// <returns>True if the key was present.</returns>
public bool TryGetValue(TKey key, out TValue item)
{
NativeParallelMultiHashMapIterator<TKey> tempIt;
return UnsafeParallelHashMapBase<TKey, TValue>.TryGetFirstValueAtomic(m_Buffer, key, out item, out tempIt);
}
/// <summary>
/// Returns true if a given key is present in this hash map.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>True if the key was present.</returns>
public bool ContainsKey(TKey key)
{
return UnsafeParallelHashMapBase<TKey, TValue>.TryGetFirstValueAtomic(m_Buffer, key, out var tempValue, out var tempIt);
}
/// <summary>
/// Gets and sets values by key.
/// </summary>
/// <remarks>Getting a key that is not present will throw. Setting a key that is not already present will add the key.</remarks>
/// <param name="key">The key to look up.</param>
/// <value>The value associated with the key.</value>
/// <exception cref="ArgumentException">For getting, thrown if the key was not present.</exception>
public TValue this[TKey key]
{
get
{
TValue res;
TryGetValue(key, out res);
return res;
}
set
{
if (UnsafeParallelHashMapBase<TKey, TValue>.TryGetFirstValueAtomic(m_Buffer, key, out var item, out var iterator))
{
UnsafeParallelHashMapBase<TKey, TValue>.SetValue(m_Buffer, ref iterator, ref value);
}
else
{
UnsafeParallelHashMapBase<TKey, TValue>.TryAdd(m_Buffer, key, value, false, m_AllocatorLabel);
}
}
}
/// <summary>
/// Whether this hash map has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this hash map has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_Buffer != null;
/// <summary>
/// Releases all resources (memory).
/// </summary>
public void Dispose()
{
UnsafeParallelHashMapData.DeallocateHashMap(m_Buffer, m_AllocatorLabel);
m_Buffer = null;
}
/// <summary>
/// Creates and schedules a job that will dispose this hash map.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this hash map.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
var jobHandle = new UnsafeParallelHashMapDisposeJob { Data = m_Buffer, Allocator = m_AllocatorLabel }.Schedule(inputDeps);
m_Buffer = null;
return jobHandle;
}
/// <summary>
/// Returns an array with a copy of all this hash map's keys (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all this hash map's keys (in no particular order).</returns>
public NativeArray<TKey> GetKeyArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray<TKey>(UnsafeParallelHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetKeyArray(m_Buffer, result);
return result;
}
/// <summary>
/// Returns an array with a copy of all this hash map's values (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all this hash map's values (in no particular order).</returns>
public NativeArray<TValue> GetValueArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray<TValue>(UnsafeParallelHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetValueArray(m_Buffer, result);
return result;
}
/// <summary>
/// Returns a NativeKeyValueArrays with a copy of all this hash map's keys and values.
/// </summary>
/// <remarks>The key-value pairs are copied in no particular order. For all `i`, `Values[i]` will be the value associated with `Keys[i]`.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>A NativeKeyValueArrays with a copy of all this hash map's keys and values.</returns>
public NativeKeyValueArrays<TKey, TValue> GetKeyValueArrays(AllocatorManager.AllocatorHandle allocator)
{
var result = new NativeKeyValueArrays<TKey, TValue>(UnsafeParallelHashMapData.GetCount(m_Buffer), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetKeyValueArrays(m_Buffer, result);
return result;
}
/// <summary>
/// Returns a parallel writer for this hash map.
/// </summary>
/// <returns>A parallel writer for this hash map.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_ThreadIndex = 0;
writer.m_Buffer = m_Buffer;
return writer;
}
/// <summary>
/// A parallel writer for a UnsafeParallelHashMap.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a UnsafeParallelHashMap.
/// </remarks>
[NativeContainerIsAtomicWriteOnly]
public unsafe struct ParallelWriter
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeParallelHashMapData* m_Buffer;
[NativeSetThreadIndex]
internal int m_ThreadIndex;
/// <summary>
/// The number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
public int Capacity
{
get
{
UnsafeParallelHashMapData* data = m_Buffer;
return data->keyCapacity;
}
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method returns false without modifying the hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <returns>True if the key-value pair was added.</returns>
public bool TryAdd(TKey key, TValue item)
{
Assert.IsTrue(m_ThreadIndex >= 0);
return UnsafeParallelHashMapBase<TKey, TValue>.TryAddAtomic(m_Buffer, key, item, m_ThreadIndex);
}
}
/// <summary>
/// Returns an enumerator over the key-value pairs of this hash map.
/// </summary>
/// <returns>An enumerator over the key-value pairs of this hash map.</returns>
public Enumerator GetEnumerator()
{
return new Enumerator { m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_Buffer) };
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<KeyValue<TKey, TValue>> IEnumerable<KeyValue<TKey, TValue>>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the key-value pairs of a hash map.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// From this state, the first <see cref="MoveNext"/> call advances the enumerator to the first key-value pair.
/// </remarks>
public struct Enumerator : IEnumerator<KeyValue<TKey, TValue>>
{
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next key-value pair.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public bool MoveNext() => m_Enumerator.MoveNext();
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset() => m_Enumerator.Reset();
/// <summary>
/// The current key-value pair.
/// </summary>
/// <value>The current key-value pair.</value>
public KeyValue<TKey, TValue> Current => m_Enumerator.GetCurrent<TKey, TValue>();
object IEnumerator.Current => Current;
}
}
[Obsolete("UnsafeMultiHashMap is renamed to UnsafeParallelMultiHashMap. (UnityUpgradable) -> UnsafeParallelMultiHashMap<TKey, TValue>", false)]
[StructLayout(LayoutKind.Sequential)]
public unsafe struct UnsafeMultiHashMap<TKey, TValue>
: INativeDisposable
, IEnumerable<KeyValue<TKey, TValue>> // Used by collection initializers.
where TKey : struct, IEquatable<TKey>
where TValue : struct
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeParallelHashMapData* m_Buffer;
internal AllocatorManager.AllocatorHandle m_AllocatorLabel;
/// <summary>
/// Initializes and returns an instance of UnsafeParallelMultiHashMap.
/// </summary>
/// <param name="capacity">The number of key-value pairs that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public UnsafeMultiHashMap(int capacity, AllocatorManager.AllocatorHandle allocator)
{
m_AllocatorLabel = allocator;
// Bucket size if bigger to reduce collisions
UnsafeParallelHashMapData.AllocateHashMap<TKey, TValue>(capacity, capacity * 2, allocator, out m_Buffer);
Clear();
}
/// <summary>
/// Whether this hash map is empty.
/// </summary>
/// <value>True if this hash map is empty or the hash map has not been constructed.</value>
public bool IsEmpty => !IsCreated || UnsafeParallelHashMapData.IsEmpty(m_Buffer);
/// <summary>
/// Returns the current number of key-value pairs in this hash map.
/// </summary>
/// <remarks>Key-value pairs with matching keys are counted as separate, individual pairs.</remarks>
/// <returns>The current number of key-value pairs in this hash map.</returns>
public int Count()
{
if (m_Buffer->allocatedIndexLength <= 0)
{
return 0;
}
return UnsafeParallelHashMapData.GetCount(m_Buffer);
}
/// <summary>
/// Returns the number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than the current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity
{
get
{
UnsafeParallelHashMapData* data = m_Buffer;
return data->keyCapacity;
}
set
{
UnsafeParallelHashMapData* data = m_Buffer;
UnsafeParallelHashMapData.ReallocateHashMap<TKey, TValue>(data, value, UnsafeParallelHashMapData.GetBucketSize(value), m_AllocatorLabel);
}
}
/// <summary>
/// Removes all key-value pairs.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear()
{
UnsafeParallelHashMapBase<TKey, TValue>.Clear(m_Buffer);
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>
/// If a key-value pair with this key is already present, an additional separate key-value pair is added.
/// </remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
public void Add(TKey key, TValue item)
{
UnsafeParallelHashMapBase<TKey, TValue>.TryAdd(m_Buffer, key, item, true, m_AllocatorLabel);
}
/// <summary>
/// Removes a key and its associated value(s).
/// </summary>
/// <param name="key">The key to remove.</param>
/// <returns>The number of removed key-value pairs. If the key was not present, returns 0.</returns>
public int Remove(TKey key)
{
return UnsafeParallelHashMapBase<TKey, TValue>.Remove(m_Buffer, key, true);
}
/// <summary>
/// Removes all key-value pairs with a particular key and a particular value.
/// </summary>
/// <remarks>Removes all key-value pairs which have a particular key and which *also have* a particular value.
/// In other words: (key *AND* value) rather than (key *OR* value).</remarks>
/// <typeparam name="TValueEQ">The type of the value.</typeparam>
/// <param name="key">The key of the key-value pairs to remove.</param>
/// <param name="value">The value of the key-value pairs to remove.</param>
public void Remove<TValueEQ>(TKey key, TValueEQ value)
where TValueEQ : struct, IEquatable<TValueEQ>
{
UnsafeParallelHashMapBase<TKey, TValueEQ>.RemoveKeyValue(m_Buffer, key, value);
}
/// <summary>
/// Removes a single key-value pair.
/// </summary>
/// <param name="it">An iterator representing the key-value pair to remove.</param>
/// <exception cref="InvalidOperationException">Thrown if the iterator is invalid.</exception>
public void Remove(NativeParallelMultiHashMapIterator<TKey> it)
{
UnsafeParallelHashMapBase<TKey, TValue>.Remove(m_Buffer, it);
}
/// <summary>
/// Gets an iterator for a key.
/// </summary>
/// <param name="key">The key.</param>
/// <param name="item">Outputs the associated value represented by the iterator.</param>
/// <param name="it">Outputs an iterator.</param>
/// <returns>True if the key was present.</returns>
public bool TryGetFirstValue(TKey key, out TValue item, out NativeParallelMultiHashMapIterator<TKey> it)
{
return UnsafeParallelHashMapBase<TKey, TValue>.TryGetFirstValueAtomic(m_Buffer, key, out item, out it);
}
/// <summary>
/// Advances an iterator to the next value associated with its key.
/// </summary>
/// <param name="item">Outputs the next value.</param>
/// <param name="it">A reference to the iterator to advance.</param>
/// <returns>True if the key was present and had another value.</returns>
public bool TryGetNextValue(out TValue item, ref NativeParallelMultiHashMapIterator<TKey> it)
{
return UnsafeParallelHashMapBase<TKey, TValue>.TryGetNextValueAtomic(m_Buffer, out item, ref it);
}
/// <summary>
/// Returns true if a given key is present in this hash map.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>True if the key was present in this hash map.</returns>
public bool ContainsKey(TKey key)
{
return TryGetFirstValue(key, out var temp0, out var temp1);
}
/// <summary>
/// Returns the number of values associated with a given key.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>The number of values associated with the key. Returns 0 if the key was not present.</returns>
public int CountValuesForKey(TKey key)
{
if (!TryGetFirstValue(key, out var value, out var iterator))
{
return 0;
}
var count = 1;
while (TryGetNextValue(out value, ref iterator))
{
count++;
}
return count;
}
/// <summary>
/// Sets a new value for an existing key-value pair.
/// </summary>
/// <param name="item">The new value.</param>
/// <param name="it">The iterator representing a key-value pair.</param>
/// <returns>True if a value was overwritten.</returns>
public bool SetValue(TValue item, NativeParallelMultiHashMapIterator<TKey> it)
{
return UnsafeParallelHashMapBase<TKey, TValue>.SetValue(m_Buffer, ref it, ref item);
}
/// <summary>
/// Whether this hash map has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this hash map has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_Buffer != null;
/// <summary>
/// Releases all resources (memory and safety handles).
/// </summary>
public void Dispose()
{
UnsafeParallelHashMapData.DeallocateHashMap(m_Buffer, m_AllocatorLabel);
m_Buffer = null;
}
/// <summary>
/// Creates and schedules a job that will dispose this hash map.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this hash map.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
var jobHandle = new UnsafeParallelHashMapDisposeJob { Data = m_Buffer, Allocator = m_AllocatorLabel }.Schedule(inputDeps);
m_Buffer = null;
return jobHandle;
}
/// <summary>
/// Returns an array with a copy of all the keys (in no particular order).
/// </summary>
/// <remarks>A key with *N* values is included *N* times in the array.
///
/// Use `GetUniqueKeyArray` of <see cref="Unity.Collections.NativeParallelHashMapExtensions"/> instead if you only want one occurrence of each key.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all the keys (in no particular order).</returns>
public NativeArray<TKey> GetKeyArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray<TKey>(Count(), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetKeyArray(m_Buffer, result);
return result;
}
/// <summary>
/// Returns an array with a copy of all the values (in no particular order).
/// </summary>
/// <remarks>The values are not deduplicated. If you sort the returned array,
/// you can use <see cref="Unity.Collections.NativeParallelHashMapExtensions.Unique{T}"/> to remove duplicate values.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all the values (in no particular order).</returns>
public NativeArray<TValue> GetValueArray(AllocatorManager.AllocatorHandle allocator)
{
var result = CollectionHelper.CreateNativeArray<TValue>(Count(), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetValueArray(m_Buffer, result);
return result;
}
/// <summary>
/// Returns a NativeKeyValueArrays with a copy of all the keys and values (in no particular order).
/// </summary>
/// <remarks>A key with *N* values is included *N* times in the array.
/// </remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>A NativeKeyValueArrays with a copy of all the keys and values (in no particular order).</returns>
public NativeKeyValueArrays<TKey, TValue> GetKeyValueArrays(AllocatorManager.AllocatorHandle allocator)
{
var result = new NativeKeyValueArrays<TKey, TValue>(Count(), allocator, NativeArrayOptions.UninitializedMemory);
UnsafeParallelHashMapData.GetKeyValueArrays(m_Buffer, result);
return result;
}
/// <summary>
/// Returns an enumerator over the values of an individual key.
/// </summary>
/// <param name="key">The key to get an enumerator for.</param>
/// <returns>An enumerator over the values of a key.</returns>
public Enumerator GetValuesForKey(TKey key)
{
return new Enumerator { hashmap = this, key = key, isFirst = true };
}
/// <summary>
/// An enumerator over the values of an individual key in a multi hash map.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first value of the key.
/// </remarks>
public struct Enumerator : IEnumerator<TValue>
{
internal UnsafeMultiHashMap<TKey, TValue> hashmap;
internal TKey key;
internal bool isFirst;
TValue value;
NativeParallelMultiHashMapIterator<TKey> iterator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next value of the key.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public bool MoveNext()
{
//Avoids going beyond the end of the collection.
if (isFirst)
{
isFirst = false;
return hashmap.TryGetFirstValue(key, out value, out iterator);
}
return hashmap.TryGetNextValue(out value, ref iterator);
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset() => isFirst = true;
/// <summary>
/// The current value.
/// </summary>
/// <value>The current value.</value>
public TValue Current => value;
object IEnumerator.Current => Current;
/// <summary>
/// Returns this enumerator.
/// </summary>
/// <returns>This enumerator.</returns>
public Enumerator GetEnumerator() { return this; }
}
/// <summary>
/// Returns a parallel writer for this hash map.
/// </summary>
/// <returns>A parallel writer for this hash map.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
#if UNITY_DOTSRUNTIME
writer.m_ThreadIndex = -1; // aggressively check that code-gen has patched the ThreadIndex
#else
writer.m_ThreadIndex = 0;
#endif
writer.m_Buffer = m_Buffer;
return writer;
}
/// <summary>
/// A parallel writer for an UnsafeParallelMultiHashMap.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a UnsafeParallelMultiHashMap.
/// </remarks>
[NativeContainerIsAtomicWriteOnly]
public unsafe struct ParallelWriter
{
[NativeDisableUnsafePtrRestriction]
internal UnsafeParallelHashMapData* m_Buffer;
[NativeSetThreadIndex]
internal int m_ThreadIndex;
/// <summary>
/// Returns the number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
public int Capacity
{
get
{
return m_Buffer->keyCapacity;
}
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>
/// If a key-value pair with this key is already present, an additional separate key-value pair is added.
/// </remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
public void Add(TKey key, TValue item)
{
Assert.IsTrue(m_ThreadIndex >= 0);
UnsafeParallelHashMapBase<TKey, TValue>.AddAtomicMulti(m_Buffer, key, item, m_ThreadIndex);
}
}
/// <summary>
/// Returns an enumerator over the key-value pairs of this hash map.
/// </summary>
/// <remarks>A key with *N* values is visited by the enumerator *N* times.</remarks>
/// <returns>An enumerator over the key-value pairs of this hash map.</returns>
public KeyValueEnumerator GetEnumerator()
{
return new KeyValueEnumerator { m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_Buffer) };
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<KeyValue<TKey, TValue>> IEnumerable<KeyValue<TKey, TValue>>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the key-value pairs of a multi hash map.
/// </summary>
/// <remarks>A key with *N* values is visited by the enumerator *N* times.
///
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first key-value pair.
/// </remarks>
public struct KeyValueEnumerator : IEnumerator<KeyValue<TKey, TValue>>
{
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next key-value pair.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public bool MoveNext() => m_Enumerator.MoveNext();
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset() => m_Enumerator.Reset();
/// <summary>
/// The current key-value pair.
/// </summary>
/// <value>The current key-value pair.</value>
public KeyValue<TKey, TValue> Current => m_Enumerator.GetCurrent<TKey, TValue>();
object IEnumerator.Current => Current;
}
}
[Obsolete("UnsafeHashSet is renamed to UnsafeParallelHashSet. (UnityUpgradable) -> UnsafeParallelHashSet<T>", false)]
public unsafe struct UnsafeHashSet<T>
: INativeDisposable
, IEnumerable<T> // Used by collection initializers.
where T : unmanaged, IEquatable<T>
{
internal UnsafeParallelHashMap<T, bool> m_Data;
/// <summary>
/// Initializes and returns an instance of UnsafeHashSet.
/// </summary>
/// <param name="capacity">The number of values that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public UnsafeHashSet(int capacity, AllocatorManager.AllocatorHandle allocator)
{
m_Data = new UnsafeParallelHashMap<T, bool>(capacity, allocator);
}
/// <summary>
/// Whether this set is empty.
/// </summary>
/// <value>True if this set is empty.</value>
public bool IsEmpty => m_Data.IsEmpty;
/// <summary>
/// Returns the current number of values in this set.
/// </summary>
/// <returns>The current number of values in this set.</returns>
public int Count() => m_Data.Count();
/// <summary>
/// The number of values that fit in the current allocation.
/// </summary>
/// <value>The number of values that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity { get => m_Data.Capacity; set => m_Data.Capacity = value; }
/// <summary>
/// Whether this set has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this set has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_Data.IsCreated;
/// <summary>
/// Releases all resources (memory).
/// </summary>
public void Dispose() => m_Data.Dispose();
/// <summary>
/// Creates and schedules a job that will dispose this set.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this set.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps) => m_Data.Dispose(inputDeps);
/// <summary>
/// Removes all values.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear() => m_Data.Clear();
/// <summary>
/// Adds a new value (unless it is already present).
/// </summary>
/// <param name="item">The value to add.</param>
/// <returns>True if the value was not already present.</returns>
public bool Add(T item) => m_Data.TryAdd(item, false);
/// <summary>
/// Removes a particular value.
/// </summary>
/// <param name="item">The value to remove.</param>
/// <returns>True if the value was present.</returns>
public bool Remove(T item) => m_Data.Remove(item);
/// <summary>
/// Returns true if a particular value is present.
/// </summary>
/// <param name="item">The value to check for.</param>
/// <returns>True if the value was present.</returns>
public bool Contains(T item) => m_Data.ContainsKey(item);
/// <summary>
/// Returns an array with a copy of this set's values (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of the set's values.</returns>
public NativeArray<T> ToNativeArray(AllocatorManager.AllocatorHandle allocator) => m_Data.GetKeyArray(allocator);
/// <summary>
/// Returns a parallel writer.
/// </summary>
/// <returns>A parallel writer.</returns>
public ParallelWriter AsParallelWriter()
{
return new ParallelWriter { m_Data = m_Data.AsParallelWriter() };
}
/// <summary>
/// A parallel writer for an UnsafeHashSet.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a set.
/// </remarks>
[NativeContainerIsAtomicWriteOnly]
public struct ParallelWriter
{
internal UnsafeParallelHashMap<T, bool>.ParallelWriter m_Data;
/// <summary>
/// The number of values that fit in the current allocation.
/// </summary>
/// <value>The number of values that fit in the current allocation.</value>
public int Capacity => m_Data.Capacity;
/// <summary>
/// Adds a new value (unless it is already present).
/// </summary>
/// <param name="item">The value to add.</param>
/// <returns>True if the value is not already present.</returns>
public bool Add(T item) => m_Data.TryAdd(item, false);
}
/// <summary>
/// Returns an enumerator over the values of this set.
/// </summary>
/// <returns>An enumerator over the values of this set.</returns>
public Enumerator GetEnumerator()
{
return new Enumerator { m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_Data.m_Buffer) };
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<T> IEnumerable<T>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the values of a set.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is invalid.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first value.
/// </remarks>
public struct Enumerator : IEnumerator<T>
{
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next value.
/// </summary>
/// <returns>True if `Current` is valid to read after the call.</returns>
public bool MoveNext() => m_Enumerator.MoveNext();
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset() => m_Enumerator.Reset();
/// <summary>
/// The current value.
/// </summary>
/// <value>The current value.</value>
public T Current => m_Enumerator.GetCurrentKey<T>();
object IEnumerator.Current => Current;
}
}
}
namespace Unity.Collections
{
[Obsolete("NativeMultiHashMapIterator is renamed to NativeParallelMultiHashMapIterator. (UnityUpgradable) -> NativeParallelMultiHashMapIterator<TKey>", false)]
public struct NativeMultiHashMapIterator<TKey>
where TKey : struct
{
internal TKey key;
internal int NextEntryIndex;
internal int EntryIndex;
/// <summary>
/// Returns the entry index.
/// </summary>
/// <returns>The entry index.</returns>
public int GetEntryIndex() => EntryIndex;
}
[Obsolete("NativeHashMap is renamed to NativeParallelHashMap. (UnityUpgradable) -> NativeParallelHashMap<TKey, TValue>", false)]
[StructLayout(LayoutKind.Sequential)]
[NativeContainer]
public unsafe struct NativeHashMap<TKey, TValue>
: INativeDisposable
, IEnumerable<KeyValue<TKey, TValue>> // Used by collection initializers.
where TKey : struct, IEquatable<TKey>
where TValue : struct
{
internal UnsafeParallelHashMap<TKey, TValue> m_HashMapData;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<NativeHashMap<TKey, TValue>>();
#if REMOVE_DISPOSE_SENTINEL
#else
[NativeSetClassTypeToNullOnSchedule]
DisposeSentinel m_DisposeSentinel;
#endif
#endif
/// <summary>
/// Initializes and returns an instance of NativeParallelHashMap.
/// </summary>
/// <param name="capacity">The number of key-value pairs that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public NativeHashMap(int capacity, AllocatorManager.AllocatorHandle allocator)
: this(capacity, allocator, 2)
{
}
NativeHashMap(int capacity, AllocatorManager.AllocatorHandle allocator, int disposeSentinelStackDepth)
{
m_HashMapData = new UnsafeParallelHashMap<TKey, TValue>(capacity, allocator);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
m_Safety = CollectionHelper.CreateSafetyHandle(allocator);
#else
if (AllocatorManager.IsCustomAllocator(allocator.ToAllocator))
{
m_Safety = AtomicSafetyHandle.Create();
m_DisposeSentinel = null;
}
else
{
DisposeSentinel.Create(out m_Safety, out m_DisposeSentinel, disposeSentinelStackDepth, allocator.ToAllocator);
}
#endif
CollectionHelper.SetStaticSafetyId<NativeParallelHashMap<TKey, TValue>>(ref m_Safety, ref s_staticSafetyId.Data);
AtomicSafetyHandle.SetBumpSecondaryVersionOnScheduleWrite(m_Safety, true);
#endif
}
/// <summary>
/// Whether this hash map is empty.
/// </summary>
/// <value>True if this hash map is empty or if the map has not been constructed.</value>
public bool IsEmpty
{
get
{
if (!IsCreated)
{
return true;
}
CheckRead();
return m_HashMapData.IsEmpty;
}
}
/// <summary>
/// The current number of key-value pairs in this hash map.
/// </summary>
/// <returns>The current number of key-value pairs in this hash map.</returns>
public int Count()
{
CheckRead();
return m_HashMapData.Count();
}
/// <summary>
/// The number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than the current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity
{
get
{
CheckRead();
return m_HashMapData.Capacity;
}
set
{
CheckWrite();
m_HashMapData.Capacity = value;
}
}
/// <summary>
/// Removes all key-value pairs.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear()
{
CheckWrite();
m_HashMapData.Clear();
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method returns false without modifying the hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <returns>True if the key-value pair was added.</returns>
public bool TryAdd(TKey key, TValue item)
{
CheckWrite();
return m_HashMapData.TryAdd(key, item);
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method throws without modifying the hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <exception cref="ArgumentException">Thrown if the key was already present.</exception>
public void Add(TKey key, TValue item)
{
var added = TryAdd(key, item);
if (!added)
{
ThrowKeyAlreadyAdded(key);
}
}
/// <summary>
/// Removes a key-value pair.
/// </summary>
/// <param name="key">The key to remove.</param>
/// <returns>True if a key-value pair was removed.</returns>
public bool Remove(TKey key)
{
CheckWrite();
return m_HashMapData.Remove(key);
}
/// <summary>
/// Returns the value associated with a key.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <param name="item">Outputs the value associated with the key. Outputs default if the key was not present.</param>
/// <returns>True if the key was present.</returns>
public bool TryGetValue(TKey key, out TValue item)
{
CheckRead();
return m_HashMapData.TryGetValue(key, out item);
}
/// <summary>
/// Returns true if a given key is present in this hash map.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>True if the key was present.</returns>
public bool ContainsKey(TKey key)
{
CheckRead();
return m_HashMapData.ContainsKey(key);
}
/// <summary>
/// Gets and sets values by key.
/// </summary>
/// <remarks>Getting a key that is not present will throw. Setting a key that is not already present will add the key.</remarks>
/// <param name="key">The key to look up.</param>
/// <value>The value associated with the key.</value>
/// <exception cref="ArgumentException">For getting, thrown if the key was not present.</exception>
public TValue this[TKey key]
{
get
{
CheckRead();
TValue res;
if (m_HashMapData.TryGetValue(key, out res))
{
return res;
}
ThrowKeyNotPresent(key);
return default;
}
set
{
CheckWrite();
m_HashMapData[key] = value;
}
}
/// <summary>
/// Whether this hash map has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this hash map has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_HashMapData.IsCreated;
/// <summary>
/// Releases all resources (memory and safety handles).
/// </summary>
public void Dispose()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
CollectionHelper.DisposeSafetyHandle(ref m_Safety);
#else
DisposeSentinel.Dispose(ref m_Safety, ref m_DisposeSentinel);
#endif
#endif
m_HashMapData.Dispose();
}
/// <summary>
/// Creates and schedules a job that will dispose this hash map.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this hash map.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
#else
// [DeallocateOnJobCompletion] is not supported, but we want the deallocation
// to happen in a thread. DisposeSentinel needs to be cleared on main thread.
// AtomicSafetyHandle can be destroyed after the job was scheduled (Job scheduling
// will check that no jobs are writing to the container).
DisposeSentinel.Clear(ref m_DisposeSentinel);
#endif
var jobHandle = new UnsafeParallelHashMapDataDisposeJob { Data = new UnsafeParallelHashMapDataDispose { m_Buffer = m_HashMapData.m_Buffer, m_AllocatorLabel = m_HashMapData.m_AllocatorLabel, m_Safety = m_Safety } }.Schedule(inputDeps);
AtomicSafetyHandle.Release(m_Safety);
#else
var jobHandle = new UnsafeParallelHashMapDataDisposeJob { Data = new UnsafeParallelHashMapDataDispose { m_Buffer = m_HashMapData.m_Buffer, m_AllocatorLabel = m_HashMapData.m_AllocatorLabel } }.Schedule(inputDeps);
#endif
m_HashMapData.m_Buffer = null;
return jobHandle;
}
/// <summary>
/// Returns an array with a copy of all this hash map's keys (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all this hash map's keys (in no particular order).</returns>
public NativeArray<TKey> GetKeyArray(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_HashMapData.GetKeyArray(allocator);
}
/// <summary>
/// Returns an array with a copy of all this hash map's values (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all this hash map's values (in no particular order).</returns>
public NativeArray<TValue> GetValueArray(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_HashMapData.GetValueArray(allocator);
}
/// <summary>
/// Returns a NativeKeyValueArrays with a copy of all this hash map's keys and values.
/// </summary>
/// <remarks>The key-value pairs are copied in no particular order. For all `i`, `Values[i]` will be the value associated with `Keys[i]`.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>A NativeKeyValueArrays with a copy of all this hash map's keys and values.</returns>
public NativeKeyValueArrays<TKey, TValue> GetKeyValueArrays(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_HashMapData.GetKeyValueArrays(allocator);
}
/// <summary>
/// Returns a parallel writer for this hash map.
/// </summary>
/// <returns>A parallel writer for this hash map.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_Writer = m_HashMapData.AsParallelWriter();
#if ENABLE_UNITY_COLLECTIONS_CHECKS
writer.m_Safety = m_Safety;
CollectionHelper.SetStaticSafetyId<ParallelWriter>(ref writer.m_Safety, ref ParallelWriter.s_staticSafetyId.Data);
#endif
return writer;
}
/// <summary>
/// A parallel writer for a NativeParallelHashMap.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a NativeParallelHashMap.
/// </remarks>
[NativeContainer]
[NativeContainerIsAtomicWriteOnly]
[DebuggerDisplay("Capacity = {m_Writer.Capacity}")]
public unsafe struct ParallelWriter
{
internal UnsafeParallelHashMap<TKey, TValue>.ParallelWriter m_Writer;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
internal static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<ParallelWriter>();
#endif
/// <summary>
/// Returns the index of the current thread.
/// </summary>
/// <remarks>In a job, each thread gets its own copy of the ParallelWriter struct, and the job system assigns
/// each copy the index of its thread.</remarks>
/// <value>The index of the current thread.</value>
public int m_ThreadIndex => m_Writer.m_ThreadIndex;
/// <summary>
/// The number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
public int Capacity
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Writer.Capacity;
}
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>If the key is already present, this method returns false without modifying this hash map.</remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
/// <returns>True if the key-value pair was added.</returns>
public bool TryAdd(TKey key, TValue item)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckWriteAndBumpSecondaryVersion(m_Safety);
#endif
return m_Writer.TryAdd(key, item);
}
}
/// <summary>
/// Returns an enumerator over the key-value pairs of this hash map.
/// </summary>
/// <returns>An enumerator over the key-value pairs of this hash map.</returns>
public Enumerator GetEnumerator()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckGetSecondaryDataPointerAndThrow(m_Safety);
var ash = m_Safety;
AtomicSafetyHandle.UseSecondaryVersion(ref ash);
#endif
return new Enumerator
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
m_Safety = ash,
#endif
m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_HashMapData.m_Buffer),
};
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<KeyValue<TKey, TValue>> IEnumerable<KeyValue<TKey, TValue>>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the key-value pairs of a hash map.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// From this state, the first <see cref="MoveNext"/> call advances the enumerator to the first key-value pair.
/// </remarks>
[NativeContainer]
[NativeContainerIsReadOnly]
public struct Enumerator : IEnumerator<KeyValue<TKey, TValue>>
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
#endif
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next key-value pair.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public bool MoveNext()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Enumerator.MoveNext();
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
m_Enumerator.Reset();
}
/// <summary>
/// The current key-value pair.
/// </summary>
/// <value>The current key-value pair.</value>
public KeyValue<TKey, TValue> Current => m_Enumerator.GetCurrent<TKey, TValue>();
object IEnumerator.Current => Current;
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckRead()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckWrite()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckWriteAndBumpSecondaryVersion(m_Safety);
#endif
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void ThrowKeyNotPresent(TKey key)
{
throw new ArgumentException($"Key: {key} is not present in the NativeParallelHashMap.");
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void ThrowKeyAlreadyAdded(TKey key)
{
throw new ArgumentException("An item with the same key has already been added", nameof(key));
}
}
[Obsolete("NativeMultiHashMap is renamed to NativeParallelMultiHashMap. (UnityUpgradable) -> NativeParallelMultiHashMap<TKey, TValue>", false)]
[StructLayout(LayoutKind.Sequential)]
[NativeContainer]
public unsafe struct NativeMultiHashMap<TKey, TValue>
: INativeDisposable
, IEnumerable<KeyValue<TKey, TValue>> // Used by collection initializers.
where TKey : struct, IEquatable<TKey>
where TValue : struct
{
internal UnsafeParallelMultiHashMap<TKey, TValue> m_MultiHashMapData;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
internal static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<NativeMultiHashMap<TKey, TValue>>();
#if REMOVE_DISPOSE_SENTINEL
#else
[NativeSetClassTypeToNullOnSchedule]
internal DisposeSentinel m_DisposeSentinel;
#endif
#endif
/// <summary>
/// Returns a newly allocated multi hash map.
/// </summary>
/// <param name="capacity">The number of key-value pairs that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public NativeMultiHashMap(int capacity, AllocatorManager.AllocatorHandle allocator)
: this(capacity, allocator, 2)
{
}
internal void Initialize<U>(int capacity, ref U allocator, int disposeSentinelStackDepth)
where U : unmanaged, AllocatorManager.IAllocator
{
m_MultiHashMapData = new UnsafeParallelMultiHashMap<TKey, TValue>(capacity, allocator.Handle);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
m_Safety = CollectionHelper.CreateSafetyHandle(allocator);
#else
if (allocator.IsCustomAllocator)
{
m_Safety = AtomicSafetyHandle.Create();
m_DisposeSentinel = null;
}
else
{
DisposeSentinel.Create(out m_Safety, out m_DisposeSentinel, disposeSentinelStackDepth, allocator.ToAllocator);
}
#endif
CollectionHelper.SetStaticSafetyId<NativeMultiHashMap<TKey, TValue>>(ref m_Safety, ref s_staticSafetyId.Data);
AtomicSafetyHandle.SetBumpSecondaryVersionOnScheduleWrite(m_Safety, true);
#endif
}
NativeMultiHashMap(int capacity, AllocatorManager.AllocatorHandle allocator, int disposeSentinelStackDepth)
{
this = default;
Initialize(capacity, ref allocator, disposeSentinelStackDepth);
}
/// <summary>
/// Whether this hash map is empty.
/// </summary>
/// <value>True if the hash map is empty or if the hash map has not been constructed.</value>
public bool IsEmpty
{
get
{
CheckRead();
return m_MultiHashMapData.IsEmpty;
}
}
/// <summary>
/// Returns the current number of key-value pairs in this hash map.
/// </summary>
/// <remarks>Key-value pairs with matching keys are counted as separate, individual pairs.</remarks>
/// <returns>The current number of key-value pairs in this hash map.</returns>
public int Count()
{
CheckRead();
return m_MultiHashMapData.Count();
}
/// <summary>
/// Returns the number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than the current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity
{
get
{
CheckRead();
return m_MultiHashMapData.Capacity;
}
set
{
CheckWrite();
m_MultiHashMapData.Capacity = value;
}
}
/// <summary>
/// Removes all key-value pairs.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear()
{
CheckWrite();
m_MultiHashMapData.Clear();
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>
/// If a key-value pair with this key is already present, an additional separate key-value pair is added.
/// </remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
public void Add(TKey key, TValue item)
{
CheckWrite();
m_MultiHashMapData.Add(key, item);
}
/// <summary>
/// Removes a key and its associated value(s).
/// </summary>
/// <param name="key">The key to remove.</param>
/// <returns>The number of removed key-value pairs. If the key was not present, returns 0.</returns>
public int Remove(TKey key)
{
CheckWrite();
return m_MultiHashMapData.Remove(key);
}
/// <summary>
/// Removes a single key-value pair.
/// </summary>
/// <param name="it">An iterator representing the key-value pair to remove.</param>
/// <exception cref="InvalidOperationException">Thrown if the iterator is invalid.</exception>
public void Remove(NativeParallelMultiHashMapIterator<TKey> it)
{
CheckWrite();
m_MultiHashMapData.Remove(it);
}
/// <summary>
/// Gets an iterator for a key.
/// </summary>
/// <param name="key">The key.</param>
/// <param name="item">Outputs the associated value represented by the iterator.</param>
/// <param name="it">Outputs an iterator.</param>
/// <returns>True if the key was present.</returns>
public bool TryGetFirstValue(TKey key, out TValue item, out NativeParallelMultiHashMapIterator<TKey> it)
{
CheckRead();
return m_MultiHashMapData.TryGetFirstValue(key, out item, out it);
}
/// <summary>
/// Advances an iterator to the next value associated with its key.
/// </summary>
/// <param name="item">Outputs the next value.</param>
/// <param name="it">A reference to the iterator to advance.</param>
/// <returns>True if the key was present and had another value.</returns>
public bool TryGetNextValue(out TValue item, ref NativeParallelMultiHashMapIterator<TKey> it)
{
CheckRead();
return m_MultiHashMapData.TryGetNextValue(out item, ref it);
}
/// <summary>
/// Returns true if a given key is present in this hash map.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>True if the key was present in this hash map.</returns>
public bool ContainsKey(TKey key)
{
return TryGetFirstValue(key, out var temp0, out var temp1);
}
/// <summary>
/// Returns the number of values associated with a given key.
/// </summary>
/// <param name="key">The key to look up.</param>
/// <returns>The number of values associated with the key. Returns 0 if the key was not present.</returns>
public int CountValuesForKey(TKey key)
{
if (!TryGetFirstValue(key, out var value, out var iterator))
{
return 0;
}
var count = 1;
while (TryGetNextValue(out value, ref iterator))
{
count++;
}
return count;
}
/// <summary>
/// Sets a new value for an existing key-value pair.
/// </summary>
/// <param name="item">The new value.</param>
/// <param name="it">The iterator representing a key-value pair.</param>
/// <returns>True if a value was overwritten.</returns>
public bool SetValue(TValue item, NativeParallelMultiHashMapIterator<TKey> it)
{
CheckWrite();
return m_MultiHashMapData.SetValue(item, it);
}
/// <summary>
/// Whether this hash map has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this hash map has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_MultiHashMapData.IsCreated;
/// <summary>
/// Releases all resources (memory and safety handles).
/// </summary>
public void Dispose()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
CollectionHelper.DisposeSafetyHandle(ref m_Safety);
#else
DisposeSentinel.Dispose(ref m_Safety, ref m_DisposeSentinel);
#endif
#endif
m_MultiHashMapData.Dispose();
}
/// <summary>
/// Creates and schedules a job that will dispose this hash map.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this hash map.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
#if REMOVE_DISPOSE_SENTINEL
#else
// [DeallocateOnJobCompletion] is not supported, but we want the deallocation
// to happen in a thread. DisposeSentinel needs to be cleared on main thread.
// AtomicSafetyHandle can be destroyed after the job was scheduled (Job scheduling
// will check that no jobs are writing to the container).
DisposeSentinel.Clear(ref m_DisposeSentinel);
#endif
var jobHandle = new UnsafeParallelHashMapDataDisposeJob { Data = new UnsafeParallelHashMapDataDispose { m_Buffer = m_MultiHashMapData.m_Buffer, m_AllocatorLabel = m_MultiHashMapData.m_AllocatorLabel, m_Safety = m_Safety } }.Schedule(inputDeps);
AtomicSafetyHandle.Release(m_Safety);
#else
var jobHandle = new UnsafeParallelHashMapDataDisposeJob { Data = new UnsafeParallelHashMapDataDispose { m_Buffer = m_MultiHashMapData.m_Buffer, m_AllocatorLabel = m_MultiHashMapData.m_AllocatorLabel } }.Schedule(inputDeps);
#endif
m_MultiHashMapData.m_Buffer = null;
return jobHandle;
}
/// <summary>
/// Returns an array with a copy of all the keys (in no particular order).
/// </summary>
/// <remarks>A key with *N* values is included *N* times in the array.
///
/// Use `GetUniqueKeyArray` of <see cref="Unity.Collections.NativeParallelHashMapExtensions"/> instead if you only want one occurrence of each key.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all the keys (in no particular order).</returns>
public NativeArray<TKey> GetKeyArray(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_MultiHashMapData.GetKeyArray(allocator);
}
/// <summary>
/// Returns an array with a copy of all the values (in no particular order).
/// </summary>
/// <remarks>The values are not deduplicated. If you sort the returned array,
/// you can use <see cref="Unity.Collections.NativeParallelHashMapExtensions.Unique{T}"/> to remove duplicate values.</remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of all the values (in no particular order).</returns>
public NativeArray<TValue> GetValueArray(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_MultiHashMapData.GetValueArray(allocator);
}
/// <summary>
/// Returns a NativeKeyValueArrays with a copy of all the keys and values (in no particular order).
/// </summary>
/// <remarks>A key with *N* values is included *N* times in the array.
/// </remarks>
/// <param name="allocator">The allocator to use.</param>
/// <returns>A NativeKeyValueArrays with a copy of all the keys and values (in no particular order).</returns>
public NativeKeyValueArrays<TKey, TValue> GetKeyValueArrays(AllocatorManager.AllocatorHandle allocator)
{
CheckRead();
return m_MultiHashMapData.GetKeyValueArrays(allocator);
}
/// <summary>
/// Returns a parallel writer for this hash map.
/// </summary>
/// <returns>A parallel writer for this hash map.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_Writer = m_MultiHashMapData.AsParallelWriter();
#if ENABLE_UNITY_COLLECTIONS_CHECKS
writer.m_Safety = m_Safety;
CollectionHelper.SetStaticSafetyId<ParallelWriter>(ref writer.m_Safety, ref s_staticSafetyId.Data);
#endif
return writer;
}
/// <summary>
/// A parallel writer for a NativeParallelMultiHashMap.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a NativeParallelMultiHashMap.
/// </remarks>
[NativeContainer]
[NativeContainerIsAtomicWriteOnly]
public unsafe struct ParallelWriter
{
internal UnsafeParallelMultiHashMap<TKey, TValue>.ParallelWriter m_Writer;
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
internal static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<ParallelWriter>();
#endif
/// <summary>
/// Returns the index of the current thread.
/// </summary>
/// <remarks>In a job, each thread gets its own copy of the ParallelWriter struct, and the job system assigns
/// each copy the index of its thread.</remarks>
/// <value>The index of the current thread.</value>
public int m_ThreadIndex => m_Writer.m_ThreadIndex;
/// <summary>
/// Returns the number of key-value pairs that fit in the current allocation.
/// </summary>
/// <value>The number of key-value pairs that fit in the current allocation.</value>
public int Capacity
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Writer.Capacity;
}
}
/// <summary>
/// Adds a new key-value pair.
/// </summary>
/// <remarks>
/// If a key-value pair with this key is already present, an additional separate key-value pair is added.
/// </remarks>
/// <param name="key">The key to add.</param>
/// <param name="item">The value to add.</param>
public void Add(TKey key, TValue item)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckWriteAndBumpSecondaryVersion(m_Safety);
#endif
m_Writer.Add(key, item);
}
}
/// <summary>
/// Returns an enumerator over the values of an individual key.
/// </summary>
/// <param name="key">The key to get an enumerator for.</param>
/// <returns>An enumerator over the values of a key.</returns>
public Enumerator GetValuesForKey(TKey key)
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return new Enumerator { hashmap = this, key = key, isFirst = true };
}
/// <summary>
/// An enumerator over the values of an individual key in a multi hash map.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first value of the key.
/// </remarks>
public struct Enumerator : IEnumerator<TValue>
{
internal NativeMultiHashMap<TKey, TValue> hashmap;
internal TKey key;
internal bool isFirst;
TValue value;
NativeParallelMultiHashMapIterator<TKey> iterator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next value of the key.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public bool MoveNext()
{
//Avoids going beyond the end of the collection.
if (isFirst)
{
isFirst = false;
return hashmap.TryGetFirstValue(key, out value, out iterator);
}
return hashmap.TryGetNextValue(out value, ref iterator);
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset() => isFirst = true;
/// <summary>
/// The current value.
/// </summary>
/// <value>The current value.</value>
public TValue Current => value;
object IEnumerator.Current => Current;
/// <summary>
/// Returns this enumerator.
/// </summary>
/// <returns>This enumerator.</returns>
public Enumerator GetEnumerator() { return this; }
}
/// <summary>
/// Returns an enumerator over the key-value pairs of this hash map.
/// </summary>
/// <remarks>A key with *N* values is visited by the enumerator *N* times.</remarks>
/// <returns>An enumerator over the key-value pairs of this hash map.</returns>
public KeyValueEnumerator GetEnumerator()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckGetSecondaryDataPointerAndThrow(m_Safety);
var ash = m_Safety;
AtomicSafetyHandle.UseSecondaryVersion(ref ash);
#endif
return new KeyValueEnumerator
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
m_Safety = ash,
#endif
m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_MultiHashMapData.m_Buffer),
};
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<KeyValue<TKey, TValue>> IEnumerable<KeyValue<TKey, TValue>>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the key-value pairs of a multi hash map.
/// </summary>
/// <remarks>A key with *N* values is visited by the enumerator *N* times.
///
/// In an enumerator's initial state, <see cref="Current"/> is not valid to read.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first key-value pair.
/// </remarks>
[NativeContainer]
[NativeContainerIsReadOnly]
public struct KeyValueEnumerator : IEnumerator<KeyValue<TKey, TValue>>
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
#endif
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next key-value pair.
/// </summary>
/// <returns>True if <see cref="Current"/> is valid to read after the call.</returns>
public unsafe bool MoveNext()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Enumerator.MoveNext();
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
m_Enumerator.Reset();
}
/// <summary>
/// The current key-value pair.
/// </summary>
/// <value>The current key-value pair.</value>
public KeyValue<TKey, TValue> Current
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Enumerator.GetCurrent<TKey, TValue>();
}
}
object IEnumerator.Current => Current;
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckRead()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
}
[Conditional("ENABLE_UNITY_COLLECTIONS_CHECKS")]
void CheckWrite()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckWriteAndBumpSecondaryVersion(m_Safety);
#endif
}
}
[Obsolete("NativeHashSet is renamed to NativeParallelHashSet. (UnityUpgradable) -> NativeParallelHashSet<T>", false)]
public unsafe struct NativeHashSet<T>
: INativeDisposable
, IEnumerable<T> // Used by collection initializers.
where T : unmanaged, IEquatable<T>
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<NativeHashSet<T>>();
#endif
internal NativeParallelHashMap<T, bool> m_Data;
/// <summary>
/// Initializes and returns an instance of NativeHashSet.
/// </summary>
/// <param name="capacity">The number of values that should fit in the initial allocation.</param>
/// <param name="allocator">The allocator to use.</param>
public NativeHashSet(int capacity, AllocatorManager.AllocatorHandle allocator)
{
m_Data = new NativeParallelHashMap<T, bool>(capacity, allocator);
#if ENABLE_UNITY_COLLECTIONS_CHECKS
CollectionHelper.SetStaticSafetyId<NativeHashSet<T>>(ref m_Data.m_Safety, ref s_staticSafetyId.Data);
#endif
}
/// <summary>
/// Whether this set is empty.
/// </summary>
/// <value>True if this set is empty or if the set has not been constructed.</value>
public bool IsEmpty => m_Data.IsEmpty;
/// <summary>
/// Returns the current number of values in this set.
/// </summary>
/// <returns>The current number of values in this set.</returns>
public int Count() => m_Data.Count();
/// <summary>
/// The number of values that fit in the current allocation.
/// </summary>
/// <value>The number of values that fit in the current allocation.</value>
/// <param name="value">A new capacity. Must be larger than current capacity.</param>
/// <exception cref="Exception">Thrown if `value` is less than the current capacity.</exception>
public int Capacity { get => m_Data.Capacity; set => m_Data.Capacity = value; }
/// <summary>
/// Whether this set has been allocated (and not yet deallocated).
/// </summary>
/// <value>True if this set has been allocated (and not yet deallocated).</value>
public bool IsCreated => m_Data.IsCreated;
/// <summary>
/// Releases all resources (memory and safety handles).
/// </summary>
public void Dispose() => m_Data.Dispose();
/// <summary>
/// Creates and schedules a job that will dispose this set.
/// </summary>
/// <param name="inputDeps">A job handle. The newly scheduled job will depend upon this handle.</param>
/// <returns>The handle of a new job that will dispose this set.</returns>
[NotBurstCompatible /* This is not burst compatible because of IJob's use of a static IntPtr. Should switch to IJobBurstSchedulable in the future */]
public JobHandle Dispose(JobHandle inputDeps) => m_Data.Dispose(inputDeps);
/// <summary>
/// Removes all values.
/// </summary>
/// <remarks>Does not change the capacity.</remarks>
public void Clear() => m_Data.Clear();
/// <summary>
/// Adds a new value (unless it is already present).
/// </summary>
/// <param name="item">The value to add.</param>
/// <returns>True if the value was not already present.</returns>
public bool Add(T item) => m_Data.TryAdd(item, false);
/// <summary>
/// Removes a particular value.
/// </summary>
/// <param name="item">The value to remove.</param>
/// <returns>True if the value was present.</returns>
public bool Remove(T item) => m_Data.Remove(item);
/// <summary>
/// Returns true if a particular value is present.
/// </summary>
/// <param name="item">The value to check for.</param>
/// <returns>True if the value was present.</returns>
public bool Contains(T item) => m_Data.ContainsKey(item);
/// <summary>
/// Returns an array with a copy of this set's values (in no particular order).
/// </summary>
/// <param name="allocator">The allocator to use.</param>
/// <returns>An array with a copy of the set's values.</returns>
public NativeArray<T> ToNativeArray(AllocatorManager.AllocatorHandle allocator) => m_Data.GetKeyArray(allocator);
/// <summary>
/// Returns a parallel writer.
/// </summary>
/// <returns>A parallel writer.</returns>
public ParallelWriter AsParallelWriter()
{
ParallelWriter writer;
writer.m_Data = m_Data.AsParallelWriter();
#if ENABLE_UNITY_COLLECTIONS_CHECKS
CollectionHelper.SetStaticSafetyId<ParallelWriter>(ref writer.m_Data.m_Safety, ref ParallelWriter.s_staticSafetyId.Data);
#endif
return writer;
}
/// <summary>
/// A parallel writer for a NativeHashSet.
/// </summary>
/// <remarks>
/// Use <see cref="AsParallelWriter"/> to create a parallel writer for a set.
/// </remarks>
[NativeContainerIsAtomicWriteOnly]
public struct ParallelWriter
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal static readonly SharedStatic<int> s_staticSafetyId = SharedStatic<int>.GetOrCreate<ParallelWriter>();
#endif
internal NativeParallelHashMap<T, bool>.ParallelWriter m_Data;
/// <summary>
/// The number of values that fit in the current allocation.
/// </summary>
/// <value>The number of values that fit in the current allocation.</value>
public int Capacity => m_Data.Capacity;
/// <summary>
/// Adds a new value (unless it is already present).
/// </summary>
/// <param name="item">The value to add.</param>
/// <returns>True if the value is not already present.</returns>
public bool Add(T item) => m_Data.TryAdd(item, false);
}
/// <summary>
/// Returns an enumerator over the values of this set.
/// </summary>
/// <returns>An enumerator over the values of this set.</returns>
public Enumerator GetEnumerator()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckGetSecondaryDataPointerAndThrow(m_Data.m_Safety);
var ash = m_Data.m_Safety;
AtomicSafetyHandle.UseSecondaryVersion(ref ash);
#endif
return new Enumerator
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
m_Safety = ash,
#endif
m_Enumerator = new UnsafeParallelHashMapDataEnumerator(m_Data.m_HashMapData.m_Buffer),
};
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator<T> IEnumerable<T>.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// This method is not implemented. Use <see cref="GetEnumerator"/> instead.
/// </summary>
/// <returns>Throws NotImplementedException.</returns>
/// <exception cref="NotImplementedException">Method is not implemented.</exception>
IEnumerator IEnumerable.GetEnumerator()
{
throw new NotImplementedException();
}
/// <summary>
/// An enumerator over the values of a set.
/// </summary>
/// <remarks>
/// In an enumerator's initial state, <see cref="Current"/> is invalid.
/// The first <see cref="MoveNext"/> call advances the enumerator to the first value.
/// </remarks>
[NativeContainer]
[NativeContainerIsReadOnly]
public struct Enumerator : IEnumerator<T>
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
internal AtomicSafetyHandle m_Safety;
#endif
internal UnsafeParallelHashMapDataEnumerator m_Enumerator;
/// <summary>
/// Does nothing.
/// </summary>
public void Dispose() { }
/// <summary>
/// Advances the enumerator to the next value.
/// </summary>
/// <returns>True if `Current` is valid to read after the call.</returns>
public bool MoveNext()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Enumerator.MoveNext();
}
/// <summary>
/// Resets the enumerator to its initial state.
/// </summary>
public void Reset()
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
m_Enumerator.Reset();
}
/// <summary>
/// The current value.
/// </summary>
/// <value>The current value.</value>
public T Current
{
get
{
#if ENABLE_UNITY_COLLECTIONS_CHECKS
AtomicSafetyHandle.CheckReadAndThrow(m_Safety);
#endif
return m_Enumerator.GetCurrentKey<T>();
}
}
/// <summary>
/// Gets the element at the current position of the enumerator in the container.
/// </summary>
object IEnumerator.Current => Current;
}
}
}