using System;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine.InputSystem.Utilities;
////TODO: the Debug.Asserts here should be also be made as checks ahead of time (on the layout)
////TODO: the read/write methods need a proper pass for consistency
////FIXME: some architectures have strict memory alignment requirements; we should honor them when
//// we read/write primitive values or support stitching values together from bytes manually
//// where needed
////TODO: allow bitOffset to be non-zero for byte-aligned control as long as result is byte-aligned
////REVIEW: The combination of byte and bit offset instead of just a single bit offset has turned out
//// to be plenty awkward to use in practice; should be replace it?
////REVIEW: AutomaticOffset is a very awkward mechanism; it's primary use really is for "parking" unused
//// controls for which a more elegant and robust mechanism can surely be devised
namespace UnityEngine.InputSystem.LowLevel
{
///
/// Information about a memory region storing input state.
///
///
/// Input state is kept in raw memory blocks. All state is centrally managed by the input system;
/// controls cannot keep their own independent state.
///
/// Each state block is tagged with a format code indicating the storage format used for the
/// memory block. This can either be one out of a set of primitive formats (such as "INT") or a custom
/// format code indicating a more complex format.
///
/// Memory using primitive formats can be converted to and from primitive values directly by this struct.
///
/// State memory is bit-addressable, meaning that it can be offset from a byte address in bits ()
/// and is sized in bits instead of bytes (). However, in practice, bit-addressing
/// memory reads and writes are only supported on the bitfield primitive format.
///
/// Input state memory is restricted to a maximum of 4GB in size. Offsets are recorded in 32 bits.
///
///
public unsafe struct InputStateBlock
{
public const uint InvalidOffset = 0xffffffff;
public const uint AutomaticOffset = 0xfffffffe;
///
/// Format code for a variable-width bitfield representing an unsigned value,
/// i.e. all bits including the highest one represent the magnitude of the value.
///
///
public static readonly FourCC FormatBit = new FourCC('B', 'I', 'T');
internal const int kFormatBit = 'B' << 24 | 'I' << 16 | 'T' << 8 | ' ';
///
/// Format code for a variable-width bitfield representing a signed value, i.e. the
/// highest bit is used as a sign bit (0=unsigned, 1=signed) and the remaining bits represent
/// the magnitude of the value.
///
///
public static readonly FourCC FormatSBit = new FourCC('S', 'B', 'I', 'T');
internal const int kFormatSBit = 'S' << 24 | 'B' << 16 | 'I' << 8 | 'T';
///
/// Format code for a 32-bit signed integer value.
///
///
public static readonly FourCC FormatInt = new FourCC('I', 'N', 'T');
internal const int kFormatInt = 'I' << 24 | 'N' << 16 | 'T' << 8 | ' ';
///
/// Format code for a 32-bit unsigned integer value.
///
///
public static readonly FourCC FormatUInt = new FourCC('U', 'I', 'N', 'T');
internal const int kFormatUInt = 'U' << 24 | 'I' << 16 | 'N' << 8 | 'T';
///
/// Format code for a 16-bit signed integer value.
///
///
public static readonly FourCC FormatShort = new FourCC('S', 'H', 'R', 'T');
internal const int kFormatShort = 'S' << 24 | 'H' << 16 | 'R' << 8 | 'T';
///
/// Format code for a 16-bit unsigned integer value.
///
///
public static readonly FourCC FormatUShort = new FourCC('U', 'S', 'H', 'T');
internal const int kFormatUShort = 'U' << 24 | 'S' << 16 | 'H' << 8 | 'T';
///
/// Format code for an 8-bit unsigned integer value.
///
///
public static readonly FourCC FormatByte = new FourCC('B', 'Y', 'T', 'E');
internal const int kFormatByte = 'B' << 24 | 'Y' << 16 | 'T' << 8 | 'E';
///
/// Format code for an 8-bit signed integer value.
///
///
public static readonly FourCC FormatSByte = new FourCC('S', 'B', 'Y', 'T');
internal const int kFormatSByte = 'S' << 24 | 'B' << 16 | 'Y' << 8 | 'T';
///
/// Format code for a 64-bit signed integer value.
///
///
public static readonly FourCC FormatLong = new FourCC('L', 'N', 'G');
internal const int kFormatLong = 'L' << 24 | 'N' << 16 | 'G' << 8 | ' ';
///
/// Format code for a 64-bit unsigned integer value.
///
///
public static readonly FourCC FormatULong = new FourCC('U', 'L', 'N', 'G');
internal const int kFormatULong = 'U' << 24 | 'L' << 16 | 'N' << 8 | 'G';
///
/// Format code for a 32-bit floating-point value.
///
///
public static readonly FourCC FormatFloat = new FourCC('F', 'L', 'T');
internal const int kFormatFloat = 'F' << 24 | 'L' << 16 | 'T' << 8 | ' ';
///
/// Format code for a 64-bit floating-point value.
///
///
public static readonly FourCC FormatDouble = new FourCC('D', 'B', 'L');
internal const int kFormatDouble = 'D' << 24 | 'B' << 16 | 'L' << 8 | ' ';
////REVIEW: are these really useful?
public static readonly FourCC FormatVector2 = new FourCC('V', 'E', 'C', '2');
public static readonly FourCC FormatVector3 = new FourCC('V', 'E', 'C', '3');
public static readonly FourCC FormatQuaternion = new FourCC('Q', 'U', 'A', 'T');
public static readonly FourCC FormatVector2Short = new FourCC('V', 'C', '2', 'S');
public static readonly FourCC FormatVector3Short = new FourCC('V', 'C', '3', 'S');
public static readonly FourCC FormatVector2Byte = new FourCC('V', 'C', '2', 'B');
public static readonly FourCC FormatVector3Byte = new FourCC('V', 'C', '3', 'B');
public static int GetSizeOfPrimitiveFormatInBits(FourCC type)
{
if (type == FormatBit || type == FormatSBit)
return 1;
if (type == FormatInt || type == FormatUInt)
return 4 * 8;
if (type == FormatShort || type == FormatUShort)
return 2 * 8;
if (type == FormatByte || type == FormatSByte)
return 1 * 8;
if (type == FormatLong || type == FormatULong)
return 8 * 8;
if (type == FormatFloat)
return 4 * 8;
if (type == FormatDouble)
return 8 * 8;
if (type == FormatVector2)
return 2 * 4 * 8;
if (type == FormatVector3)
return 3 * 4 * 8;
if (type == FormatQuaternion)
return 4 * 4 * 8;
if (type == FormatVector2Short)
return 2 * 2 * 8;
if (type == FormatVector3Short)
return 3 * 2 * 8;
if (type == FormatVector2Byte)
return 2 * 1 * 8;
if (type == FormatVector3Byte)
return 3 * 1 * 8;
return -1;
}
public static FourCC GetPrimitiveFormatFromType(Type type)
{
if (ReferenceEquals(type, typeof(int)))
return FormatInt;
if (ReferenceEquals(type, typeof(uint)))
return FormatUInt;
if (ReferenceEquals(type, typeof(short)))
return FormatShort;
if (ReferenceEquals(type, typeof(ushort)))
return FormatUShort;
if (ReferenceEquals(type, typeof(byte)))
return FormatByte;
if (ReferenceEquals(type, typeof(sbyte)))
return FormatSByte;
if (ReferenceEquals(type, typeof(long)))
return FormatLong;
if (ReferenceEquals(type, typeof(ulong)))
return FormatULong;
if (ReferenceEquals(type, typeof(float)))
return FormatFloat;
if (ReferenceEquals(type, typeof(double)))
return FormatDouble;
if (ReferenceEquals(type, typeof(Vector2)))
return FormatVector2;
if (ReferenceEquals(type, typeof(Vector3)))
return FormatVector3;
if (ReferenceEquals(type, typeof(Quaternion)))
return FormatQuaternion;
return new FourCC();
}
///
/// Type identifier for the memory layout used by the state.
///
///
/// Used for safety checks to make sure that when the system copies state memory, it
/// copies between compatible layouts. If set to a primitive state format, also used to
/// determine the size of the state block.
///
public FourCC format { get; set; }
////TODO: collapse byteOffset and bitOffset into a single 'offset' field
// Offset into state buffer. After a device is added to the system, this is relative
// to the global buffers; otherwise it is relative to the device root.
// During setup, this can be InvalidOffset to indicate a control that should be placed
// at an offset automatically; otherwise it denotes a fixed offset relative to the
// parent control.
public uint byteOffset { get; set; }
// Bit offset from the given byte offset. Also zero-based (i.e. first bit is at bit
// offset #0).
public uint bitOffset { get; set; }
// Size of the state in bits. If this % 8 is not 0, the control is considered a
// bitfield control.
// During setup, if this field is 0 it means the size of the control should be automatically
// computed from either its children (if it has any) or its set format. If it has neither,
// setup will throw.
public uint sizeInBits { get; set; }
internal uint alignedSizeInBytes => (sizeInBits + 7) >> 3;
internal uint effectiveByteOffset => byteOffset + (bitOffset >> 3);
internal uint effectiveBitOffset => byteOffset * 8 + bitOffset;
public int ReadInt(void* statePtr)
{
Debug.Assert(sizeInBits != 0);
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1 : 0;
return (int)MemoryHelpers.ReadMultipleBitsAsUInt(valuePtr, bitOffset, sizeInBits);
case kFormatSBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1 : -1;
return MemoryHelpers.ReadExcessKMultipleBitsAsInt(valuePtr, bitOffset, sizeInBits);
case kFormatInt:
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "INT and UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT and UINT state must be byte-aligned");
if (fmt == kFormatUInt)
Debug.Assert(*(uint*)valuePtr <= int.MaxValue, "UINT must fit in the int");
return *(int*)valuePtr;
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
return *(short*)valuePtr;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
return *(ushort*)valuePtr;
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
return *valuePtr;
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
return *(sbyte*)valuePtr;
// Not supported:
// - kFormatLong
// - kFormatULong
// - kFormatFloat
// - kFormatDouble
default:
throw new InvalidOperationException($"State format '{format}' is not supported as integer format");
}
}
public void WriteInt(void* statePtr, int value)
{
Debug.Assert(sizeInBits != 0);
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value != 0);
else
MemoryHelpers.WriteUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, (uint)value);
break;
case kFormatSBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value > 0);
else
MemoryHelpers.WriteIntAsExcessKMultipleBits(valuePtr, bitOffset, sizeInBits, value);
break;
case kFormatInt:
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "INT and UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT and UINT state must be byte-aligned");
*(int*)valuePtr = value;
break;
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
*(short*)valuePtr = (short)value;
break;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
*(ushort*)valuePtr = (ushort)value;
break;
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
*valuePtr = (byte)value;
break;
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
*(sbyte*)valuePtr = (sbyte)value;
break;
// Not supported:
// - kFormatLong
// - kFormatULong
// - kFormatFloat
// - kFormatDouble
default:
throw new Exception($"State format '{format}' is not supported as integer format");
}
}
public float ReadFloat(void* statePtr)
{
Debug.Assert(sizeInBits != 0);
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
// If a control with an integer-based representation does not use the full range
// of its integer size (e.g. only goes from [0..128]), processors or the parameters
// above have to be used to re-process the resulting float values.
case kFormatBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1.0f : 0.0f;
return MemoryHelpers.ReadMultipleBitsAsNormalizedUInt(valuePtr, bitOffset, sizeInBits);
case kFormatSBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1.0f : -1.0f;
return MemoryHelpers.ReadMultipleBitsAsNormalizedUInt(valuePtr, bitOffset, sizeInBits) * 2.0f - 1.0f;
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(int*)valuePtr, int.MinValue, int.MaxValue) * 2.0f - 1.0f;
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*(uint*)valuePtr, uint.MinValue, uint.MaxValue);
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(short*)valuePtr, short.MinValue, short.MaxValue) * 2.0f - 1.0f;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*(ushort*)valuePtr, ushort.MinValue, ushort.MaxValue);
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*valuePtr, byte.MinValue, byte.MaxValue);
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(sbyte*)valuePtr, sbyte.MinValue, sbyte.MaxValue) * 2.0f - 1.0f;
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
return *(float*)valuePtr;
case kFormatDouble:
Debug.Assert(sizeInBits == 64, "DBL state must have sizeInBits=64");
Debug.Assert(bitOffset == 0, "DBL state must be byte-aligned");
return (float)*(double*)valuePtr;
// Not supported:
// - kFormatLong
// - kFormatULong
default:
throw new InvalidOperationException($"State format '{format}' is not supported as floating-point format");
}
}
public void WriteFloat(void* statePtr, float value)
{
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value >= 0.5f);////REVIEW: Shouldn't this be the global button press point?
else
MemoryHelpers.WriteNormalizedUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, value);
break;
case kFormatSBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value >= 0.0f);
else
MemoryHelpers.WriteNormalizedUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, value * 0.5f + 0.5f);
break;
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
*(int*)valuePtr = (int)NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, int.MinValue, int.MaxValue);
break;
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
*(uint*)valuePtr = NumberHelpers.NormalizedFloatToUInt(value, uint.MinValue, uint.MaxValue);
break;
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
*(short*)valuePtr = (short)NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, short.MinValue, short.MaxValue);
break;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
*(ushort*)valuePtr = (ushort)NumberHelpers.NormalizedFloatToUInt(value, ushort.MinValue, ushort.MaxValue);
break;
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
*valuePtr = (byte)NumberHelpers.NormalizedFloatToUInt(value, byte.MinValue, byte.MaxValue);
break;
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
*(sbyte*)valuePtr = (sbyte)NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, sbyte.MinValue, sbyte.MaxValue);
break;
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
*(float*)valuePtr = value;
break;
case kFormatDouble:
Debug.Assert(sizeInBits == 64, "DBL state must have sizeInBits=64");
Debug.Assert(bitOffset == 0, "DBL state must be byte-aligned");
*(double*)valuePtr = value;
break;
// Not supported:
// - kFormatLong
// - kFormatULong
default:
throw new Exception($"State format '{format}' is not supported as floating-point format");
}
}
internal PrimitiveValue FloatToPrimitiveValue(float value)
{
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
return value >= 0.5f;
////FIXME: is this supposed to be int or uint?
return (int)NumberHelpers.NormalizedFloatToUInt(value, 0, (uint)((1UL << (int)sizeInBits) - 1));
case kFormatSBit:
{
if (sizeInBits == 1)
return value >= 0.0f;
var minValue = (int)-(long)(1UL << ((int)sizeInBits - 1));
var maxValue = (int)((1UL << ((int)sizeInBits - 1)) - 1);
return NumberHelpers.NormalizedFloatToInt(value, minValue, maxValue);
}
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
return NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, int.MinValue, int.MaxValue);
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
return NumberHelpers.NormalizedFloatToUInt(value, uint.MinValue, uint.MaxValue);
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
return (short)NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, short.MinValue, short.MaxValue);
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
return (ushort)NumberHelpers.NormalizedFloatToUInt(value, ushort.MinValue, ushort.MaxValue);
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
return (byte)NumberHelpers.NormalizedFloatToUInt(value, byte.MinValue, byte.MaxValue);
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
return (sbyte)NumberHelpers.NormalizedFloatToInt(value * 0.5f + 0.5f, sbyte.MinValue, sbyte.MaxValue);
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
return value;
case kFormatDouble:
Debug.Assert(sizeInBits == 64, "DBL state must have sizeInBits=64");
Debug.Assert(bitOffset == 0, "DBL state must be byte-aligned");
return value;
// Not supported:
// - kFormatLong
// - kFormatULong
default:
throw new Exception($"State format '{format}' is not supported as floating-point format");
}
}
////REVIEW: This is some bad code duplication here between Read/WriteFloat&Double but given that there's no
//// way to use a type argument here, not sure how to get rid of it.
public double ReadDouble(void* statePtr)
{
Debug.Assert(sizeInBits != 0);
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
// If a control with an integer-based representation does not use the full range
// of its integer size (e.g. only goes from [0..128]), processors or the parameters
// above have to be used to re-process the resulting float values.
case kFormatBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1.0f : 0.0f;
return MemoryHelpers.ReadMultipleBitsAsNormalizedUInt(valuePtr, bitOffset, sizeInBits);
case kFormatSBit:
if (sizeInBits == 1)
return MemoryHelpers.ReadSingleBit(valuePtr, bitOffset) ? 1.0f : -1.0f;
return MemoryHelpers.ReadMultipleBitsAsNormalizedUInt(valuePtr, bitOffset, sizeInBits) * 2.0f - 1.0f;
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(int*)valuePtr, int.MinValue, int.MaxValue) * 2.0f - 1.0f;
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*(uint*)valuePtr, uint.MinValue, uint.MaxValue);
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(short*)valuePtr, short.MinValue, short.MaxValue) * 2.0f - 1.0f;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*(ushort*)valuePtr, ushort.MinValue, ushort.MaxValue);
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
return NumberHelpers.UIntToNormalizedFloat(*valuePtr, byte.MinValue, byte.MaxValue);
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
return NumberHelpers.IntToNormalizedFloat(*(sbyte*)valuePtr, sbyte.MinValue, sbyte.MaxValue) * 2.0f - 1.0f;
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
return *(float*)valuePtr;
case kFormatDouble:
Debug.Assert(sizeInBits == 64, "DBL state must have sizeInBits=64");
Debug.Assert(bitOffset == 0, "DBL state must be byte-aligned");
return *(double*)valuePtr;
// Not supported:
// - kFormatLong
// - kFormatULong
// - kFormatFloat
// - kFormatDouble
default:
throw new Exception($"State format '{format}' is not supported as floating-point format");
}
}
public void WriteDouble(void* statePtr, double value)
{
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value >= 0.5f);
else
MemoryHelpers.WriteNormalizedUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, (float)value);
break;
case kFormatSBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value >= 0.0f);
else
MemoryHelpers.WriteNormalizedUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, (float)value * 0.5f + 0.5f);
break;
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
*(int*)valuePtr = NumberHelpers.NormalizedFloatToInt((float)value * 0.5f + 0.5f, int.MinValue, int.MaxValue);
break;
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
*(uint*)valuePtr = NumberHelpers.NormalizedFloatToUInt((float)value, uint.MinValue, uint.MaxValue);
break;
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
*(short*)valuePtr = (short)NumberHelpers.NormalizedFloatToInt((float)value * 0.5f + 0.5f, short.MinValue, short.MaxValue);
break;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
*(ushort*)valuePtr = (ushort)NumberHelpers.NormalizedFloatToUInt((float)value, ushort.MinValue, ushort.MaxValue);
break;
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
*valuePtr = (byte)NumberHelpers.NormalizedFloatToUInt((float)value, byte.MinValue, byte.MaxValue);
break;
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
*(sbyte*)valuePtr = (sbyte)NumberHelpers.NormalizedFloatToInt((float)value * 0.5f + 0.5f, sbyte.MinValue, sbyte.MaxValue);
break;
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
*(float*)valuePtr = (float)value;
break;
case kFormatDouble:
Debug.Assert(sizeInBits == 64, "DBL state must have sizeInBits=64");
Debug.Assert(bitOffset == 0, "DBL state must be byte-aligned");
*(double*)valuePtr = value;
break;
// Not supported:
// - kFormatLong
// - kFormatULong
// - kFormatFloat
// - kFormatDouble
default:
throw new InvalidOperationException($"State format '{format}' is not supported as floating-point format");
}
}
public void Write(void* statePtr, PrimitiveValue value)
{
var valuePtr = (byte*)statePtr + (int)byteOffset;
var fmt = (int)format;
switch (fmt)
{
case kFormatBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value.ToBoolean());
else
MemoryHelpers.WriteUIntAsMultipleBits(valuePtr, bitOffset, sizeInBits, value.ToUInt32());
break;
case kFormatSBit:
if (sizeInBits == 1)
MemoryHelpers.WriteSingleBit(valuePtr, bitOffset, value.ToBoolean());
else
////REVIEW: previous implementation was writing int32 as two's complement here
MemoryHelpers.WriteIntAsExcessKMultipleBits(valuePtr, bitOffset, sizeInBits, value.ToInt32());
break;
case kFormatInt:
Debug.Assert(sizeInBits == 32, "INT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "INT state must be byte-aligned");
*(int*)valuePtr = value.ToInt32();
break;
case kFormatUInt:
Debug.Assert(sizeInBits == 32, "UINT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "UINT state must be byte-aligned");
*(uint*)valuePtr = value.ToUInt32();
break;
case kFormatShort:
Debug.Assert(sizeInBits == 16, "SHRT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "SHRT state must be byte-aligned");
*(short*)valuePtr = value.ToInt16();
break;
case kFormatUShort:
Debug.Assert(sizeInBits == 16, "USHT state must have sizeInBits=16");
Debug.Assert(bitOffset == 0, "USHT state must be byte-aligned");
*(ushort*)valuePtr = value.ToUInt16();
break;
case kFormatByte:
Debug.Assert(sizeInBits == 8, "BYTE state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "BYTE state must be byte-aligned");
*valuePtr = value.ToByte();
break;
case kFormatSByte:
Debug.Assert(sizeInBits == 8, "SBYT state must have sizeInBits=8");
Debug.Assert(bitOffset == 0, "SBYT state must be byte-aligned");
*(sbyte*)valuePtr = value.ToSByte();
break;
case kFormatFloat:
Debug.Assert(sizeInBits == 32, "FLT state must have sizeInBits=32");
Debug.Assert(bitOffset == 0, "FLT state must be byte-aligned");
*(float*)valuePtr = value.ToSingle();
break;
// Not supported:
// - kFormatLong
// - kFormatULong
// - kFormatDouble
default:
throw new NotImplementedException(
$"Writing primitive value of type '{value.type}' into state block with format '{format}'");
}
}
public void CopyToFrom(void* toStatePtr, void* fromStatePtr)
{
if (bitOffset != 0 || sizeInBits % 8 != 0)
throw new NotImplementedException("Copying bitfields");
var from = (byte*)fromStatePtr + byteOffset;
var to = (byte*)toStatePtr + byteOffset;
UnsafeUtility.MemCpy(to, from, alignedSizeInBytes);
}
}
}