namespace UnityEngine.Rendering.PostProcessing { /// /// A raw implementation of John Hable's artist-friendly tonemapping curve. /// See http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/ /// public class HableCurve { class Segment { public float offsetX; public float offsetY; public float scaleX; public float scaleY; public float lnA; public float B; public float Eval(float x) { float x0 = (x - offsetX) * scaleX; float y0 = 0f; // log(0) is undefined but our function should evaluate to 0. There are better ways to handle this, // but it's doing it the slow way here for clarity. if (x0 > 0) y0 = Mathf.Exp(lnA + B * Mathf.Log(x0)); return y0 * scaleY + offsetY; } } struct DirectParams { internal float x0; internal float y0; internal float x1; internal float y1; internal float W; internal float overshootX; internal float overshootY; internal float gamma; } /// /// The curve's white point. /// public float whitePoint { get; private set; } /// /// The inverse of the curve's white point. /// public float inverseWhitePoint { get; private set; } internal float x0 { get; private set; } internal float x1 { get; private set; } // Toe, mid, shoulder readonly Segment[] m_Segments = new Segment[3]; /// /// Creates a new curve. /// public HableCurve() { for (int i = 0; i < 3; i++) m_Segments[i] = new Segment(); uniforms = new Uniforms(this); } /// /// Evaluates a given point on the curve. /// /// The point within the curve to evaluate (on the horizontal axis) /// The value of the curve, at the point specified public float Eval(float x) { float normX = x * inverseWhitePoint; int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2); var segment = m_Segments[index]; float ret = segment.Eval(normX); return ret; } /// /// Initializes the curve with given settings. /// /// Affects the transition between the toe and the mid section of /// the curve. A value of 0 means no toe, a value of 1 means a very hard transition /// Affects how much of the dynamic range is in the toe. With a /// small value, the toe will be very short and quickly transition into the linear section, /// and with a longer value having a longer toe /// Affects the transition between the mid section and the /// shoulder of the curve. A value of 0 means no shoulder, a value of 1 means a very hard /// transition /// Affects how many F-stops (EV) to add to the dynamic range /// of the curve /// Affects how much overshoot to add to the shoulder /// Applies a gamma function to the curve public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma) { var dstParams = new DirectParams(); // This is not actually the display gamma. It's just a UI space to avoid having to // enter small numbers for the input. const float kPerceptualGamma = 2.2f; // Constraints { toeLength = Mathf.Pow(Mathf.Clamp01(toeLength), kPerceptualGamma); toeStrength = Mathf.Clamp01(toeStrength); shoulderAngle = Mathf.Clamp01(shoulderAngle); shoulderStrength = Mathf.Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f); shoulderLength = Mathf.Max(0f, shoulderLength); gamma = Mathf.Max(1e-5f, gamma); } // Apply base params { // Toe goes from 0 to 0.5 float x0 = toeLength * 0.5f; float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0 float remainingY = 1f - y0; float initialW = x0 + remainingY; float y1_offset = (1f - shoulderStrength) * remainingY; float x1 = x0 + y1_offset; float y1 = y0 + y1_offset; // Filmic shoulder strength is in F stops float extraW = RuntimeUtilities.Exp2(shoulderLength) - 1f; float W = initialW + extraW; dstParams.x0 = x0; dstParams.y0 = y0; dstParams.x1 = x1; dstParams.y1 = y1; dstParams.W = W; // Bake the linear to gamma space conversion dstParams.gamma = gamma; } dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength; dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength; InitSegments(dstParams); } void InitSegments(DirectParams srcParams) { var paramsCopy = srcParams; whitePoint = srcParams.W; inverseWhitePoint = 1f / srcParams.W; // normalize params to 1.0 range paramsCopy.W = 1f; paramsCopy.x0 /= srcParams.W; paramsCopy.x1 /= srcParams.W; paramsCopy.overshootX = srcParams.overshootX / srcParams.W; float toeM = 0f; float shoulderM = 0f; { float m, b; AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1); float g = srcParams.gamma; // Base function of linear section plus gamma is // y = (mx+b)^g // // which we can rewrite as // y = exp(g*ln(m) + g*ln(x+b/m)) // // and our evaluation function is (skipping the if parts): /* float x0 = (x - offsetX) * scaleX; y0 = exp(m_lnA + m_B*log(x0)); return y0*scaleY + m_offsetY; */ var midSegment = m_Segments[1]; midSegment.offsetX = -(b / m); midSegment.offsetY = 0f; midSegment.scaleX = 1f; midSegment.scaleY = 1f; midSegment.lnA = g * Mathf.Log(m); midSegment.B = g; toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0); shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1); // apply gamma to endpoints paramsCopy.y0 = Mathf.Max(1e-5f, Mathf.Pow(paramsCopy.y0, paramsCopy.gamma)); paramsCopy.y1 = Mathf.Max(1e-5f, Mathf.Pow(paramsCopy.y1, paramsCopy.gamma)); paramsCopy.overshootY = Mathf.Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f; } this.x0 = paramsCopy.x0; this.x1 = paramsCopy.x1; // Toe section { var toeSegment = m_Segments[0]; toeSegment.offsetX = 0; toeSegment.offsetY = 0f; toeSegment.scaleX = 1f; toeSegment.scaleY = 1f; float lnA, B; SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM); toeSegment.lnA = lnA; toeSegment.B = B; } // Shoulder section { // Use the simple version that is usually too flat var shoulderSegment = m_Segments[2]; float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1; float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1; float lnA, B; SolveAB(out lnA, out B, x0, y0, shoulderM); shoulderSegment.offsetX = (1f + paramsCopy.overshootX); shoulderSegment.offsetY = (1f + paramsCopy.overshootY); shoulderSegment.scaleX = -1f; shoulderSegment.scaleY = -1f; shoulderSegment.lnA = lnA; shoulderSegment.B = B; } // Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we // skipped the overshoot part. { // Evaluate shoulder at the end of the curve float scale = m_Segments[2].Eval(1f); float invScale = 1f / scale; m_Segments[0].offsetY *= invScale; m_Segments[0].scaleY *= invScale; m_Segments[1].offsetY *= invScale; m_Segments[1].scaleY *= invScale; m_Segments[2].offsetY *= invScale; m_Segments[2].scaleY *= invScale; } } // Find a function of the form: // f(x) = e^(lnA + Bln(x)) // where // f(0) = 0; not really a constraint // f(x0) = y0 // f'(x0) = m void SolveAB(out float lnA, out float B, float x0, float y0, float m) { B = (m * x0) / y0; lnA = Mathf.Log(y0) - B * Mathf.Log(x0); } // Convert to y=mx+b void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1) { float dy = (y1 - y0); float dx = (x1 - x0); if (dx == 0) m = 1f; else m = dy / dx; b = y0 - x0 * m; } // f(x) = (mx+b)^g // f'(x) = gm(mx+b)^(g-1) float EvalDerivativeLinearGamma(float m, float b, float g, float x) { float ret = g * m * Mathf.Pow(m * x + b, g - 1f); return ret; } /// /// Utility class to retrieve curve values for shader evaluation. /// public class Uniforms { HableCurve parent; internal Uniforms(HableCurve parent) { this.parent = parent; } /// /// A pre-built holding: (inverseWhitePoint, x0, x1, 0). /// public Vector4 curve { get { return new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f); } } /// /// A pre-built holding: (toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY). /// public Vector4 toeSegmentA { get { var toe = parent.m_Segments[0]; return new Vector4(toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY); } } /// /// A pre-built holding: (toe.lnA, toe.B, 0, 0). /// public Vector4 toeSegmentB { get { var toe = parent.m_Segments[0]; return new Vector4(toe.lnA, toe.B, 0f, 0f); } } /// /// A pre-built holding: (mid.offsetX, mid.offsetY, mid.scaleX, mid.scaleY). /// public Vector4 midSegmentA { get { var mid = parent.m_Segments[1]; return new Vector4(mid.offsetX, mid.offsetY, mid.scaleX, mid.scaleY); } } /// /// A pre-built holding: (mid.lnA, mid.B, 0, 0). /// public Vector4 midSegmentB { get { var mid = parent.m_Segments[1]; return new Vector4(mid.lnA, mid.B, 0f, 0f); } } /// /// A pre-built holding: (toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY). /// public Vector4 shoSegmentA { get { var sho = parent.m_Segments[2]; return new Vector4(sho.offsetX, sho.offsetY, sho.scaleX, sho.scaleY); } } /// /// A pre-built holding: (sho.lnA, sho.B, 0, 0). /// public Vector4 shoSegmentB { get { var sho = parent.m_Segments[2]; return new Vector4(sho.lnA, sho.B, 0f, 0f); } } } /// /// The builtin instance for this curve. /// public readonly Uniforms uniforms; } }