Shader "Skybox/Custom-ProceduralCubed" { Properties{ [KeywordEnum(None, Simple, High Quality)] _SunDisk("Sun", Int) = 2 _SunSize("Sun Size", Range(0,1)) = 0.04 _SunSizeConvergence("Sun Size Convergence", Range(1,10)) = 5 _AtmosphereThickness("Atmosphere Thickness", Range(0,5)) = 1.0 _SkyTint("Sky Tint", Color) = (.5, .5, .5, 1) _GroundColor("Ground", Color) = (.369, .349, .341, 1) _Exposure("Exposure", Range(0, 8)) = 1.3 _CTint("Cubemap Tint Color", Color) = (.5, .5, .5, .5) [Gamma] _CExposure("Cubemap Exposure", Range(0, 8)) = 1.0 _CRotation("Cubemap Rotation", Range(0, 360)) = 0 [NoScaleOffset] _CTex("Cubemap (HDR)", Cube) = "grey" {} } SubShader{ Tags { "Queue" = "Background" "RenderType" = "Background" "PreviewType" = "Skybox" } Cull Off ZWrite Off Pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" #include "Lighting.cginc" samplerCUBE _CTex; half4 _CTex_HDR; half4 _CTint; half _CExposure; float _CRotation; #pragma multi_compile _SUNDISK_NONE _SUNDISK_SIMPLE _SUNDISK_HIGH_QUALITY uniform half _Exposure; // HDR exposure uniform half3 _GroundColor; uniform half _SunSize; uniform half _SunSizeConvergence; uniform half3 _SkyTint; uniform half _AtmosphereThickness; #if defined(UNITY_COLORSPACE_GAMMA) #define GAMMA 2 #define COLOR_2_GAMMA(color) color #define COLOR_2_LINEAR(color) color*color #define LINEAR_2_OUTPUT(color) sqrt(color) #else #define GAMMA 2.2 // HACK: to get gfx-tests in Gamma mode to agree until UNITY_ACTIVE_COLORSPACE_IS_GAMMA is working properly #define COLOR_2_GAMMA(color) ((unity_ColorSpaceDouble.r>2.0) ? pow(color,1.0/GAMMA) : color) #define COLOR_2_LINEAR(color) color #define LINEAR_2_LINEAR(color) color #endif // RGB wavelengths // .35 (.62=158), .43 (.68=174), .525 (.75=190) static const float3 kDefaultScatteringWavelength = float3(.65, .57, .475); static const float3 kVariableRangeForScatteringWavelength = float3(.15, .15, .15); #define OUTER_RADIUS 1.025 static const float kOuterRadius = OUTER_RADIUS; static const float kOuterRadius2 = OUTER_RADIUS * OUTER_RADIUS; static const float kInnerRadius = 1.0; static const float kInnerRadius2 = 1.0; static const float kCameraHeight = 0.0001; #define kRAYLEIGH (lerp(0.0, 0.0025, pow(_AtmosphereThickness,2.5))) // Rayleigh constant #define kMIE 0.0010 // Mie constant #define kSUN_BRIGHTNESS 20.0 // Sun brightness #define kMAX_SCATTER 50.0 // Maximum scattering value, to prevent math overflows on Adrenos static const half kHDSundiskIntensityFactor = 15.0; static const half kSimpleSundiskIntensityFactor = 27.0; static const half kSunScale = 400.0 * kSUN_BRIGHTNESS; static const float kKmESun = kMIE * kSUN_BRIGHTNESS; static const float kKm4PI = kMIE * 4.0 * 3.14159265; static const float kScale = 1.0 / (OUTER_RADIUS - 1.0); static const float kScaleDepth = 0.25; static const float kScaleOverScaleDepth = (1.0 / (OUTER_RADIUS - 1.0)) / 0.25; static const float kSamples = 2.0; // THIS IS UNROLLED MANUALLY, DON'T TOUCH #define MIE_G (-0.990) #define MIE_G2 0.9801 #define SKY_GROUND_THRESHOLD 0.02 // fine tuning of performance. You can override defines here if you want some specific setup // or keep as is and allow later code to set it according to target api // if set vprog will output color in final color space (instead of linear always) // in case of rendering in gamma mode that means that we will do lerps in gamma mode too, so there will be tiny difference around horizon // #define SKYBOX_COLOR_IN_TARGET_COLOR_SPACE 0 // sun disk rendering: // no sun disk - the fastest option #define SKYBOX_SUNDISK_NONE 0 // simplistic sun disk - without mie phase function #define SKYBOX_SUNDISK_SIMPLE 1 // full calculation - uses mie phase function #define SKYBOX_SUNDISK_HQ 2 // uncomment this line and change SKYBOX_SUNDISK_SIMPLE to override material settings // #define SKYBOX_SUNDISK SKYBOX_SUNDISK_SIMPLE #ifndef SKYBOX_SUNDISK #if defined(_SUNDISK_NONE) #define SKYBOX_SUNDISK SKYBOX_SUNDISK_NONE #elif defined(_SUNDISK_SIMPLE) #define SKYBOX_SUNDISK SKYBOX_SUNDISK_SIMPLE #else #define SKYBOX_SUNDISK SKYBOX_SUNDISK_HQ #endif #endif #ifndef SKYBOX_COLOR_IN_TARGET_COLOR_SPACE #if defined(SHADER_API_MOBILE) #define SKYBOX_COLOR_IN_TARGET_COLOR_SPACE 1 #else #define SKYBOX_COLOR_IN_TARGET_COLOR_SPACE 0 #endif #endif // Calculates the Rayleigh phase function half getRayleighPhase(half eyeCos2) { return 0.75 + 0.75 * eyeCos2; } half getRayleighPhase(half3 light, half3 ray) { half eyeCos = dot(light, ray); return getRayleighPhase(eyeCos * eyeCos); } struct appdata_t { float4 vertex : POSITION; UNITY_VERTEX_INPUT_INSTANCE_ID }; struct v2f { float4 pos : SV_POSITION; #if SKYBOX_SUNDISK == SKYBOX_SUNDISK_HQ // for HQ sun disk, we need vertex itself to calculate ray-dir per-pixel float3 vertex : TEXCOORD0; #elif SKYBOX_SUNDISK == SKYBOX_SUNDISK_SIMPLE half3 rayDir : TEXCOORD0; #else // as we dont need sun disk we need just rayDir.y (sky/ground threshold) half skyGroundFactor : TEXCOORD0; #endif // calculate sky colors in vprog half3 groundColor : TEXCOORD1; half3 skyColor : TEXCOORD2; #if SKYBOX_SUNDISK != SKYBOX_SUNDISK_NONE half3 sunColor : TEXCOORD3; #endif float3 texcoord : TEXCOORD4; UNITY_VERTEX_OUTPUT_STEREO }; float3 RotateAroundYInDegrees(float3 vertex, float degrees) { float alpha = degrees * UNITY_PI / 180.0; float sina, cosa; sincos(alpha, sina, cosa); float2x2 m = float2x2(cosa, -sina, sina, cosa); return float3(mul(m, vertex.xz), vertex.y).xzy; } float scale(float inCos) { float x = 1.0 - inCos; return 0.25 * exp(-0.00287 + x * (0.459 + x * (3.83 + x * (-6.80 + x * 5.25)))); } v2f vert(appdata_t v) { v2f OUT; UNITY_SETUP_INSTANCE_ID(v); UNITY_INITIALIZE_VERTEX_OUTPUT_STEREO(OUT); OUT.pos = UnityObjectToClipPos(v.vertex); float3 rotated = RotateAroundYInDegrees(v.vertex, _CRotation); //OUT.pos = UnityObjectToClipPos(rotated); OUT.texcoord = rotated.xyz; //float3 rotated = RotateAroundYInDegrees(v.vertex, _CRotation); //float4 vertexrotated = UnityObjectToClipPos(rotated); //OUT.texcoord = vertexrotated.xyz; float3 kSkyTintInGammaSpace = COLOR_2_GAMMA(_SkyTint); // convert tint from Linear back to Gamma float3 kScatteringWavelength = lerp( kDefaultScatteringWavelength - kVariableRangeForScatteringWavelength, kDefaultScatteringWavelength + kVariableRangeForScatteringWavelength, half3(1,1,1) - kSkyTintInGammaSpace); // using Tint in sRGB gamma allows for more visually linear interpolation and to keep (.5) at (128, gray in sRGB) point float3 kInvWavelength = 1.0 / pow(kScatteringWavelength, 4); float kKrESun = kRAYLEIGH * kSUN_BRIGHTNESS; float kKr4PI = kRAYLEIGH * 4.0 * 3.14159265; float3 cameraPos = float3(0,kInnerRadius + kCameraHeight,0); // The camera's current position // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) float3 eyeRay = normalize(mul((float3x3)unity_ObjectToWorld, v.vertex.xyz)); float far = 0.0; half3 cIn, cOut; if (eyeRay.y >= 0.0) { // Sky // Calculate the length of the "atmosphere" far = sqrt(kOuterRadius2 + kInnerRadius2 * eyeRay.y * eyeRay.y - kInnerRadius2) - kInnerRadius * eyeRay.y; float3 pos = cameraPos + far * eyeRay; // Calculate the ray's starting position, then calculate its scattering offset float height = kInnerRadius + kCameraHeight; float depth = exp(kScaleOverScaleDepth * (-kCameraHeight)); float startAngle = dot(eyeRay, cameraPos) / height; float startOffset = depth * scale(startAngle); // Initialize the scattering loop variables float sampleLength = far / kSamples; float scaledLength = sampleLength * kScale; float3 sampleRay = eyeRay * sampleLength; float3 samplePoint = cameraPos + sampleRay * 0.5; // Now loop through the sample rays float3 frontColor = float3(0.0, 0.0, 0.0); // Weird workaround: WP8 and desktop FL_9_3 do not like the for loop here // (but an almost identical loop is perfectly fine in the ground calculations below) // Just unrolling this manually seems to make everything fine again. // for(int i=0; i 1 [eyeRay.y < -SKY_GROUND_THRESHOLD] - ground // if y >= 0 and < 1 [eyeRay.y <= 0 and > -SKY_GROUND_THRESHOLD] - horizon // if y < 0 [eyeRay.y > 0] - sky #if SKYBOX_SUNDISK == SKYBOX_SUNDISK_HQ half3 ray = normalize(mul((float3x3)unity_ObjectToWorld, IN.vertex)); half y = ray.y / SKY_GROUND_THRESHOLD; #elif SKYBOX_SUNDISK == SKYBOX_SUNDISK_SIMPLE half3 ray = IN.rayDir.xyz; half y = ray.y / SKY_GROUND_THRESHOLD; #else half y = IN.skyGroundFactor; #endif // if we did precalculate color in vprog: just do lerp between them col = lerp(IN.skyColor, IN.groundColor, saturate(y)); half4 tex = texCUBE(_CTex, IN.texcoord); half3 c = DecodeHDR(tex, _CTex_HDR); col += (c * _CTint.rgb * unity_ColorSpaceDouble.rgb) * _CExposure; #if SKYBOX_SUNDISK != SKYBOX_SUNDISK_NONE if (y < 0.0) { col += IN.sunColor * calcSunAttenuation(_WorldSpaceLightPos0.xyz, -ray); } #endif #if defined(UNITY_COLORSPACE_GAMMA) && !SKYBOX_COLOR_IN_TARGET_COLOR_SPACE col = LINEAR_2_OUTPUT(col); #endif return half4(col,1.0); } ENDCG } } Fallback Off }