
ModTool 2.0 Documentation

Overview 1
Features 1
Limitations 1
Contact 1

Setting up ModTool 2
Importing ModTool 2
Settings 2
Shared Assets and Packages 2

Setting up Restrictions 3
Adding A Restriction 4
Message 5
Target Type 5
Restriction Mode 6
Restriction 6

Creating an exporter 7
Creating the Mod Exporter package 7

Finding Mods 8
Search Directories 8
Mods 8

Loading a Mod 9
Loading and Unloading 9
Loaded Mods 9

Creating a Mod 10
Mod Project 10
Exporting a Mod 10
Restrictions 11



Overview
ModTool makes it easy to add mod support to your game. It enables modders to use Unity to
create scenes, prefabs and code and export them as mods for your game.

To make sure the modder's scripts or Assemblies will be compatible with the game, ModTool
has a simple but powerful code validator that lets you configure any number of restrictions and
requirements.

ModTool creates a custom unitypackage for every game, which includes everything to create
mods.

Features
● Let modders use the Unity editor to create scenes, prefabs and code for your game
● Scripts and assemblies are fully supported
● Code validation
● Supports Windows, OS X, Linux and Android
● Mod conflict detection
● Automatic Mod discovery
● Asynchronous discovery and loading of mods.

Limitations
● ModTool relies on AssetBundles, which means there could be some issues if mods are

created with the wrong Unity version. The exporter will check if the same version is used
and inform the user if that's not the case.

● Unity can't deserialize fields of [Serializable] types that have been loaded at runtime.
This means that a Mod can't use fields of its own serializable Types in the inspector.

● Mods have to rely on the game's project settings. E.g. Mods can not define their own
new tags, layers and input axes. The created Mod exporter will include the game's
project settings.

Contact
If you have any questions, suggestions, feedback or comments, please do one of the following:

● Send me an email: tim@hellomeow.net
● Make a post in the ModTool thread on the Unity forums
● Submit a new issue on GitHub

1

https://forum.unity3d.com/threads/modtool-mod-support-for-unity.442185/
https://github.com/Hello-Meow/ModTool/issues


Setting up ModTool
ModTool consists of two parts; the part that can export mods and the part that can find and load
mods. The exporter is created automatically, on a per game basis. ModTool creates a Unity
package containing everything that's needed to create mods for your game.

Importing ModTool
To begin using ModTool, just import the Unity Package. After that, you can start configuring it
and generate a Mod exporter for your game. Use ModManager to find and eventually load
mods. See the included example for a quick overview of the package.

Settings
In the settings window you can configure the things ModTool needs to know about the game.

Here you can set up restrictions (see Setting up Restrictions ), the game's shared assets you
want to include, supported platforms and the types of content you allow to be included.

Shared Assets and Packages
With the Shared Assets and Shared Packages windows you can configure which assets and
packages will be included with the mod exporter package. Here you can select scripts, prefabs
and other assets that will be included.

When including scripts, it is recommended to use Assembly Definitions. By grouping shared
scripts with an Assembly Definition, both the game and mod will reference the same code.

2



By including the Addressables package and the AddressableAssetsData folder, you can let
mods use addressable assets from your game. When sharing addressable assets, mods can
use prefabs and other assets from your game via their address, without creating duplicates.
When you include regular, non-addressable assets, they will be included in mods as duplicates.

Setting up Restrictions
With Restrictions you can control the use of namespaces, Types, a Type's members, and
inheritance in a Mod.

Restrictions can be applied to all Types, or only Types that derive from a specific Type.
Restrictions can either require or prohibit something.

Code will be validated before exporting a Mod and before a Mod is loaded into the game, to
make sure mods will be compatible with the game and don't cause issues.

ModTool has a few default restrictions, which restrict the use of System.Reflection and
System.IO. The default restrictions can be removed in the settings window if needed. It might be
a good idea to keep these in place, unless you want mods to be able to access the user's file
system or circumvent restrictions with reflection.

3



Adding A Restriction
To add a restriction, open ModTool's setting window by going to the ModTool menu.

Here you can see various settings, including restrictions. Adding a Restriction works similarly to
how you'd add a new axis in Unity's input manager. You can add a new Restriction by increasing
the size of the collection.

4



Message
A Restriction's message is what will be displayed or logged when the loading or exporting of a
Mod fails due to this Restriction.

Target Type
The Target Type of a restriction is the base type to which the Restriction will be applied. For
example, if you want a restriction to only affect Types that derive from MonoBehaviour, you can
configure it here.

When left empty, the Restriction will be applied to all Types.

5



Restriction Mode
Use the Restriction's RestrictionMode to determine whether the Restriction prohibits or requires
the use of something.

Restriction
For each Restriction you need to provide which member, Type, namespace or base class you
want to prohibit or require. The restriction will look for the name including the type name and
namespace where applicable.

When you want to restrict the use of a property, you need to provide the name of the generated
getter and/or setter methods. Usually these are "get_" or "set_" followed by the property name.
Constructors can be restricted by using ".ctor". This name includes the dot, for example:
"UnityEngine.GameObject..ctor".

This restriction will prohibit the use of the System.IO namespace for all Types.

6



Creating an exporter
The Mod Exporter is the package modders will use to export their assets and code, so they can
be used as Mods in your game.

The package includes everything that's needed to create mods for your game. These are the
ModTool exporter dll and the shared assets and package names that have been configured in
ModTool's settings.

Creating the Mod Exporter package
The package will be automatically generated and included in the game's directory when you
build the game in Unity. It can also be created at any time by using the ModTool menu.

The package will be named "<productName> Mod Tools.unitypackage".

ModTool relies on AssetBundles, which means mods that are exported with a different version of
Unity can have some issues. The exporter will check if the correct version is used and inform
the user if that's not the case.

7



Finding Mods
ModTool will look for mods in certain folders. It does this by monitoring one or more directories
for any added, changed or removed mods.

ModTool's default search directory is the "Mods'' folder inside the game's install directory. On
Android, this is based on Application.persistentDataPath. It's possible to add or remove search
directories.

ModTool keeps a collection of available Mods and provides events for whenever a Mod is
added, changed or removed.

Search Directories
To add a search directory, use ModManager.AddSearchDirectory(String)

To remove a search directory, use ModManager.RemoveSearchDirectory(String)

The search directories can be refreshed with ModManager.Refresh(). This will look for any
added, removed or changed mods.

When a new Mod is found, or when a Mod has been removed, ModTool will update the
collection of available Mods.

Mods
ModManager.mods contains all Mods that are currently available. The ModManager.
ModsChanged event will be triggered when this collection changes.

ModManager. ModFound will occur when a new Mod has been found. ModManager.
ModRemoved will occur when an existing mod has been removed.

Mod.modInfo contains all of a Mod's info, like the type of content that is included in the Mod, the
Mod's name and the Mod's version.

A Mod will become invalid when a change is detected in its folder. For example, when a Mod's
files are removed. It will be replaced with a new, up to date Mod. Make sure that you don't try to
use old Mod instances that are marked invalid. Invalid Mods won't load.

8

http://hellomeow.net/modtool/documentation/html/M_ModTool_ModManager_AddSearchDirectory.htm
http://hellomeow.net/modtool/documentation/html/M_ModTool_ModManager_RemoveSearchDirectory.htm
https://hellomeow.net/modtool/documentation/html/M_ModTool_ModManager_Refresh.htm
http://hellomeow.net/modtool/documentation/html/P_ModTool_ModManager_mods.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModsChanged.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModsChanged.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModFound.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModRemoved.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModRemoved.htm
http://hellomeow.net/modtool/documentation/html/T_ModTool_Shared_ModInfo.htm


Loading a Mod
Available Mods can easily be loaded and unloaded. Loading a mod loads the Mod's Assemblies
and assets so they can be used in the game.

Loading Mods is done asynchronously. Both the ModManager and Mods provide events for
when mods have completed loading or unloading.

Loading and Unloading
Load a mod with Mod.Load(). When a Mod has finished loading, Mod.Loaded and
ModManager.ModLoaded will occur.

To unload a mod, use Mod.Unload(). Because Mods can be loaded asynchronously, a Mod
could still be loading when Unload is called. You can keep track of a Mod's load progress with
Mod.progress and Mod.loadState. When a Mod has unloaded, Mod.Unloaded and
ModManager.ModUnloaded will occur.

Mod.isEnabled can be used to keep track of which mods a user wants to enable or disable. This
property does not affect what you can do with a Mod; a Mod that is not enabled can still be
loaded. This property is saved in the Mod's modInfo. With Mod.ConflictingModsEnabled() you
can check if any conflicting mods are enabled as well. A Mod can not be loaded when another
conflicting Mod is loaded. Two Mods are in conflict when they share scenes or assemblies that
have the same name. This should not happen very often, because the mod exporter gives these
assets a name based on the Mod's name.

Any issues related to initializing or loading a Mod, like missing files or failed code validation are
logged to the console / log file, and can also be accessed with Mod.errors.

Loaded Mods
Once a Mod has been loaded, you can use its resources. These are the prefabs, scenes and
Types in any of the Mod's Assemblies.

Scenes are wrapped in the ModScene class, to make them easy to handle and load in a similar
way as Mods.

Included prefabs are accessible through Mod.prefabs. If you wish to destroy any prefab
instances when a Mod is unloaded, you can instantiate them with the ObjectManager. The
ObjectManager keeps track of which objects belong to a certain Mod, so they can be cleaned

9

http://hellomeow.net/modtool/documentation/html/M_ModTool_Resource_Load.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_Resource_Loaded.htm
http://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModLoaded.htm
http://hellomeow.net/modtool/documentation/html/M_ModTool_Resource_Unload.htm
https://hellomeow.net/modtool/documentation/html/P_ModTool_Resource_progress.htm
https://hellomeow.net/modtool/documentation/html/P_ModTool_Resource_loadState.htm
https://hellomeow.net/modtool/documentation/html/E_ModTool_Resource_1_Unloaded.htm
https://hellomeow.net/modtool/documentation/html/E_ModTool_ModManager_ModUnloaded.htm
http://hellomeow.net/ModTool/Documentation/Help/html/P_ModTool_Mod_isEnabled.htm
http://hellomeow.net/ModTool/Documentation/Help/html/M_ModTool_Mod_ConflictingModsEnabled.htm
https://hellomeow.net/modtool/documentation/html/P_ModTool_Resource_errors.htm
http://hellomeow.net/modtool/documentation/html/T_ModTool_ModScene.htm
http://hellomeow.net/modtool/documentation/html/P_ModTool_Mod_prefabs.htm
https://hellomeow.net/modtool/documentation/html/T_ModTool_ObjectManager.htm


up properly if the mod is unloaded. This is also how ModTool keeps track of a mod's instantiated
objects internally.

You can find non-MonoBehaviour implementations of interfaces with Mod.GetInstances(). This
will find and create instances of types that implement a given interface or class.

To find MonoBehaviour implementations, you can use Mod.GetComponentsInScenes() and
Mod.GetComponentsInPrefabs().

When a Mod is unloaded while any of its scenes are still loaded, the scenes will be unloaded.
Instances of prefabs and components that are still in use will be destroyed.

Creating a Mod
Mods are created in Unity. You can create scenes, prefabs and scripts just like you would in any
other Unity project.

Once you have finished creating the assets and scripts, you can export the project as a Mod.
After that, they can be used in the game.

Mod Project
To begin creating a Mod, create a new Unity project. It is recommended to have a separate
project for each Mod.

After creating a new project, you can import the Mod Exporter package into Unity to begin
creating Mods.

Exporting a Mod
To export the project as a mod, go to the Tools menu and select ModTool > Export Mod.

Here you can give the Mod a name and other information. You can select which platforms the
Mod will support and whether to include scenes and prefabs.

10

https://hellomeow.net/modtool/documentation/html/M_ModTool_Mod_GetInstances__1.htm
https://hellomeow.net/modtool/documentation/html/M_ModTool_Mod_GetComponentsInScenes__1.htm
https://hellomeow.net/modtool/documentation/html/M_ModTool_Mod_GetComponentsInPrefabs__1.htm


ModTool relies on AssetBundles, which means mods that are exported with a different version of
Unity can have some issues. The exporter will check if the correct version is used and inform
the user if that's not the case.

Restrictions
The game might have some restrictions imposed on what you can do with scripting. This is to
make sure it will be compatible with the game and to prevent the Mod from breaking things as
much as possible.

The mod's scripts will be verified before it's exported. You can also choose to verify via the
ModTool menu at any time to see if your mod is compatible with the game. Any issues during
validation will be logged to the console or the game's log file.

11


