using System;
using System.Numerics;
using NUnit.Framework;
#if BURST_INTERNAL
using System.Text;
using Unity.Burst.Intrinsics;
using Unity.Mathematics;
#endif
namespace Burst.Compiler.IL.Tests.Helpers
{
internal static class AssertHelper
{
#if BURST_INTERNAL
// Workaround for Mono broken Equals() on v64/v128/v256
private static bool AreVectorsEqual(v64 a, v64 b)
{
return a.SLong0 == b.SLong0;
}
private static bool AreVectorsEqual(v128 a, v128 b)
{
return a.SLong0 == b.SLong0 && a.SLong1 == b.SLong1;
}
private static bool AreVectorsEqual(v256 a, v256 b)
{
return AreVectorsEqual(a.Lo128, b.Lo128) && AreVectorsEqual(a.Hi128, b.Hi128);
}
#endif
///
/// AreEqual handling specially precision for float and intrinsic vector types
///
/// The expected result
/// the actual result
public static void AreEqual(object expected, object result, int maxUlp)
{
if (expected is float && result is float)
{
var expectedF = (float)expected;
var resultF = (float)result;
Assert.True(NearEqualFloat(expectedF, resultF, maxUlp, out var ulp), $"Expected: {expectedF} != Result: {resultF}, ULPs: {ulp}");
return;
}
if (expected is double && result is double)
{
var expectedF = (double)expected;
var resultF = (double)result;
Assert.True(NearEqualDouble(expectedF, resultF, maxUlp, out var ulp), $"Expected: {expectedF} != Result: {resultF}, ULPs: {ulp}");
return;
}
#if BURST_INTERNAL
if (expected is float2 && result is float2)
{
var expectedF = (float2)expected;
var resultF = (float2)result;
Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
return;
}
if (expected is float3 && result is float3)
{
var expectedF = (float3)expected;
var resultF = (float3)result;
Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}");
return;
}
if (expected is float4 && result is float4)
{
var expectedF = (float4)expected;
var resultF = (float4)result;
Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.w, resultF.w, maxUlp, out ulp), $"Expected: {expectedF}.w != Result: {resultF}.w, ULPs: {ulp}");
return;
}
if (expected is float4x2 && result is float4x2)
{
var expectedF = (float4x2)expected;
var resultF = (float4x2)result;
Assert.True(NearEqualFloat(expectedF.c0.x, resultF.c0.x, maxUlp, out var ulp), $"Expected: {expectedF}.c0.x != Result: {resultF}.c0.x, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c0.y, resultF.c0.y, maxUlp, out ulp), $"Expected: {expectedF}.c0.y != Result: {resultF}.c0.y, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c0.z, resultF.c0.z, maxUlp, out ulp), $"Expected: {expectedF}.c0.z != Result: {resultF}.c0.z, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c0.w, resultF.c0.w, maxUlp, out ulp), $"Expected: {expectedF}.c0.w != Result: {resultF}.c0.w, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c1.x, resultF.c1.x, maxUlp, out ulp), $"Expected: {expectedF}.c1.x != Result: {resultF}.c1.x, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c1.y, resultF.c1.y, maxUlp, out ulp), $"Expected: {expectedF}.c1.y != Result: {resultF}.c1.y, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c1.z, resultF.c1.z, maxUlp, out ulp), $"Expected: {expectedF}.c1.z != Result: {resultF}.c1.z, ULPs: {ulp}");
Assert.True(NearEqualFloat(expectedF.c1.w, resultF.c1.w, maxUlp, out ulp), $"Expected: {expectedF}.c1.w != Result: {resultF}.c1.w, ULPs: {ulp}");
return;
}
if (expected is double2 && result is double2)
{
var expectedF = (double2)expected;
var resultF = (double2)result;
Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
return;
}
if (expected is double3 && result is double3)
{
var expectedF = (double3)expected;
var resultF = (double3)result;
Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}");
return;
}
if (expected is double4 && result is double4)
{
var expectedF = (double4)expected;
var resultF = (double4)result;
Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}");
Assert.True(NearEqualDouble(expectedF.w, resultF.w, maxUlp, out ulp), $"Expected: {expectedF}.w != Result: {resultF}.w, ULPs: {ulp}");
return;
}
if (expected is v64 && result is v64)
{
if (!AreVectorsEqual((v64)expected, (v64)result))
{
Assert.Fail(FormatVectorFailure64((v64)expected, (v64)result));
}
return;
}
if (expected is v128 && result is v128)
{
if (!AreVectorsEqual((v128)expected, (v128)result))
{
Assert.Fail(FormatVectorFailure128((v128)expected, (v128)result));
}
return;
}
if (expected is v64x2 && result is v64x2)
{
if (!AreVectorsEqual(((v64x2)expected).v64_0, ((v64x2)result).v64_0))
{
Assert.Fail("First component of v64x2 differs: " + FormatVectorFailure64(((v64x2)expected).v64_0, ((v64x2)result).v64_0));
}
if (!AreVectorsEqual(((v64x2)expected).v64_1, ((v64x2)result).v64_1))
{
Assert.Fail("Second component of v64x2 differs: " + FormatVectorFailure64(((v64x2)expected).v64_1, ((v64x2)result).v64_1));
}
return;
}
if (expected is v64x3 && result is v64x3)
{
if (!AreVectorsEqual(((v64x3)expected).v64_0, ((v64x3)result).v64_0))
{
Assert.Fail("First component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_0, ((v64x3)result).v64_0));
}
if (!AreVectorsEqual(((v64x3)expected).v64_1, ((v64x3)result).v64_1))
{
Assert.Fail("Second component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_1, ((v64x3)result).v64_1));
}
if (!AreVectorsEqual(((v64x3)expected).v64_2, ((v64x3)result).v64_2))
{
Assert.Fail("Third component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_2, ((v64x3)result).v64_2));
}
return;
}
if (expected is v64x4 && result is v64x4)
{
if (!AreVectorsEqual(((v64x4)expected).v64_0, ((v64x4)result).v64_0))
{
Assert.Fail("First component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_0, ((v64x4)result).v64_0));
}
if (!AreVectorsEqual(((v64x4)expected).v64_1, ((v64x4)result).v64_1))
{
Assert.Fail("Second component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_1, ((v64x4)result).v64_1));
}
if (!AreVectorsEqual(((v64x4)expected).v64_2, ((v64x4)result).v64_2))
{
Assert.Fail("Third component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_2, ((v64x4)result).v64_2));
}
if (!AreVectorsEqual(((v64x4)expected).v64_3, ((v64x4)result).v64_3))
{
Assert.Fail("Fourth component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_3, ((v64x4)result).v64_3));
}
return;
}
if (expected is v128x2 && result is v128x2)
{
if (!AreVectorsEqual(((v128x2)expected).v128_0, ((v128x2)result).v128_0))
{
Assert.Fail("First component of v128x2 differs: " + FormatVectorFailure128(((v128x2)expected).v128_0, ((v128x2)result).v128_0));
}
if (!AreVectorsEqual(((v128x2)expected).v128_1, ((v128x2)result).v128_1))
{
Assert.Fail("Second component of v128x2 differs: " + FormatVectorFailure128(((v128x2)expected).v128_1, ((v128x2)result).v128_1));
}
return;
}
if (expected is v128x3 && result is v128x3)
{
if (!AreVectorsEqual(((v128x3)expected).v128_0, ((v128x3)result).v128_0))
{
Assert.Fail("First component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_0, ((v128x3)result).v128_0));
}
if (!AreVectorsEqual(((v128x3)expected).v128_1, ((v128x3)result).v128_1))
{
Assert.Fail("Second component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_1, ((v128x3)result).v128_1));
}
if (!AreVectorsEqual(((v128x3)expected).v128_2, ((v128x3)result).v128_2))
{
Assert.Fail("Third component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_2, ((v128x3)result).v128_2));
}
return;
}
if (expected is v128x4 && result is v128x4)
{
if (!AreVectorsEqual(((v128x4)expected).v128_0, ((v128x4)result).v128_0))
{
Assert.Fail("First component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_0, ((v128x4)result).v128_0));
}
if (!AreVectorsEqual(((v128x4)expected).v128_1, ((v128x4)result).v128_1))
{
Assert.Fail("Second component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_1, ((v128x4)result).v128_1));
}
if (!AreVectorsEqual(((v128x4)expected).v128_2, ((v128x4)result).v128_2))
{
Assert.Fail("Third component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_2, ((v128x4)result).v128_2));
}
if (!AreVectorsEqual(((v128x4)expected).v128_3, ((v128x4)result).v128_3))
{
Assert.Fail("Fourth component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_3, ((v128x4)result).v128_3));
}
return;
}
if (expected is v256 && result is v256)
{
if (!AreVectorsEqual((v256)expected, (v256)result))
{
Assert.Fail(FormatVectorFailure256((v256)expected, (v256)result));
}
return;
}
#endif
Assert.AreEqual(expected, result);
}
#if BURST_INTERNAL
private unsafe static string FormatVectorFailure64(v64 expected, v64 result)
{
var b = new StringBuilder();
b.AppendLine("64-bit vectors differ!");
b.AppendLine("Expected:");
FormatVector(b, (void*)&expected, 8);
b.AppendLine();
b.AppendLine("But was :");
FormatVector(b, (void*)&result, 8);
b.AppendLine();
return b.ToString();
}
private unsafe static string FormatVectorFailure128(v128 expected, v128 result)
{
var b = new StringBuilder();
b.AppendLine("128-bit vectors differ!");
b.AppendLine("Expected:");
FormatVector(b, (void*)&expected, 16);
b.AppendLine();
b.AppendLine("But was :");
FormatVector(b, (void*)&result, 16);
b.AppendLine();
return b.ToString();
}
private unsafe static string FormatVectorFailure256(v256 expected, v256 result)
{
var b = new StringBuilder();
b.AppendLine("256-bit vectors differ!");
b.AppendLine("Expected:");
FormatVector(b, (void*)&expected, 32);
b.AppendLine();
b.AppendLine("But was :");
FormatVector(b, (void*)&result, 32);
b.AppendLine();
return b.ToString();
}
private unsafe static void FormatVector(StringBuilder b, void* v, int bytes)
{
b.Append("Double: ");
for (int i = 0; i < bytes / 8; ++i)
{
if (i > 0)
b.AppendFormat(" | ");
b.AppendFormat("{0:G17}", ((double*)v)[i]);
}
b.AppendLine();
b.Append("Float : ");
for (int i = 0; i < bytes / 4; ++i)
{
if (i > 0)
b.AppendFormat(" | ");
b.AppendFormat("{0:G15}", ((float*)v)[i]);
}
b.AppendLine();
b.Append("UInt32: ");
for (int i = 0; i < bytes / 4; ++i)
{
if (i > 0)
b.AppendFormat(" | ");
b.AppendFormat("{0:X8}", ((uint*)v)[i]);
}
b.AppendLine();
}
#endif
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const float ZeroTolerance = 4 * float.Epsilon;
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const double ZeroToleranceDouble = 4 * double.Epsilon;
public static bool NearEqualFloat(float a, float b, int maxUlp, out int ulp)
{
ulp = 0;
if (Math.Abs(a - b) < ZeroTolerance) return true;
ulp = GetUlpFloatDistance(a, b);
return ulp <= maxUlp;
}
public static unsafe int GetUlpFloatDistance(float a, float b)
{
// Save work if the floats are equal.
// Also handles +0 == -0
if (a == b)
{
return 0;
}
if (float.IsNaN(a) && float.IsNaN(b))
{
return 0;
}
if (float.IsInfinity(a) && float.IsInfinity(b))
{
return 0;
}
int aInt = *(int*)&a;
int bInt = *(int*)&b;
if ((aInt < 0) != (bInt < 0)) return int.MaxValue;
// Because we would have an overflow below while trying to do -(int.MinValue)
// We modify it here so that we don't overflow
var ulp = (long)aInt - bInt;
if (ulp <= int.MinValue) return int.MaxValue;
if (ulp > int.MaxValue) return int.MaxValue;
// We know for sure that numbers are in the range ]int.MinValue, int.MaxValue]
return (int)Math.Abs(ulp);
}
public static bool NearEqualDouble(double a, double b, int maxUlp, out long ulp)
{
ulp = 0;
if (Math.Abs(a - b) < ZeroTolerance) return true;
ulp = GetUlpDoubleDistance(a, b);
return ulp <= maxUlp;
}
private static readonly long LongMinValue = long.MinValue;
private static readonly long LongMaxValue = long.MaxValue;
public static unsafe long GetUlpDoubleDistance(double a, double b)
{
// Save work if the floats are equal.
// Also handles +0 == -0
if (a == b)
{
return 0;
}
if (double.IsNaN(a) && double.IsNaN(b))
{
return 0;
}
if (double.IsInfinity(a) && double.IsInfinity(b))
{
return 0;
}
long aInt = *(long*)&a;
long bInt = *(long*)&b;
if ((aInt < 0) != (bInt < 0)) return long.MaxValue;
var ulp = aInt - bInt;
if (ulp <= LongMinValue) return long.MaxValue;
if (ulp > LongMaxValue) return long.MaxValue;
return Math.Abs((long)ulp);
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero(float a)
{
return Math.Abs(a) < ZeroTolerance;
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero(double a)
{
return Math.Abs(a) < ZeroToleranceDouble;
}
}
}