using System; using System.Numerics; using NUnit.Framework; #if BURST_INTERNAL using System.Text; using Unity.Burst.Intrinsics; using Unity.Mathematics; #endif namespace Burst.Compiler.IL.Tests.Helpers { internal static class AssertHelper { #if BURST_INTERNAL // Workaround for Mono broken Equals() on v64/v128/v256 private static bool AreVectorsEqual(v64 a, v64 b) { return a.SLong0 == b.SLong0; } private static bool AreVectorsEqual(v128 a, v128 b) { return a.SLong0 == b.SLong0 && a.SLong1 == b.SLong1; } private static bool AreVectorsEqual(v256 a, v256 b) { return AreVectorsEqual(a.Lo128, b.Lo128) && AreVectorsEqual(a.Hi128, b.Hi128); } #endif /// /// AreEqual handling specially precision for float and intrinsic vector types /// /// The expected result /// the actual result public static void AreEqual(object expected, object result, int maxUlp) { if (expected is float && result is float) { var expectedF = (float)expected; var resultF = (float)result; Assert.True(NearEqualFloat(expectedF, resultF, maxUlp, out var ulp), $"Expected: {expectedF} != Result: {resultF}, ULPs: {ulp}"); return; } if (expected is double && result is double) { var expectedF = (double)expected; var resultF = (double)result; Assert.True(NearEqualDouble(expectedF, resultF, maxUlp, out var ulp), $"Expected: {expectedF} != Result: {resultF}, ULPs: {ulp}"); return; } #if BURST_INTERNAL if (expected is float2 && result is float2) { var expectedF = (float2)expected; var resultF = (float2)result; Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); return; } if (expected is float3 && result is float3) { var expectedF = (float3)expected; var resultF = (float3)result; Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}"); return; } if (expected is float4 && result is float4) { var expectedF = (float4)expected; var resultF = (float4)result; Assert.True(NearEqualFloat(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.w, resultF.w, maxUlp, out ulp), $"Expected: {expectedF}.w != Result: {resultF}.w, ULPs: {ulp}"); return; } if (expected is float4x2 && result is float4x2) { var expectedF = (float4x2)expected; var resultF = (float4x2)result; Assert.True(NearEqualFloat(expectedF.c0.x, resultF.c0.x, maxUlp, out var ulp), $"Expected: {expectedF}.c0.x != Result: {resultF}.c0.x, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c0.y, resultF.c0.y, maxUlp, out ulp), $"Expected: {expectedF}.c0.y != Result: {resultF}.c0.y, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c0.z, resultF.c0.z, maxUlp, out ulp), $"Expected: {expectedF}.c0.z != Result: {resultF}.c0.z, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c0.w, resultF.c0.w, maxUlp, out ulp), $"Expected: {expectedF}.c0.w != Result: {resultF}.c0.w, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c1.x, resultF.c1.x, maxUlp, out ulp), $"Expected: {expectedF}.c1.x != Result: {resultF}.c1.x, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c1.y, resultF.c1.y, maxUlp, out ulp), $"Expected: {expectedF}.c1.y != Result: {resultF}.c1.y, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c1.z, resultF.c1.z, maxUlp, out ulp), $"Expected: {expectedF}.c1.z != Result: {resultF}.c1.z, ULPs: {ulp}"); Assert.True(NearEqualFloat(expectedF.c1.w, resultF.c1.w, maxUlp, out ulp), $"Expected: {expectedF}.c1.w != Result: {resultF}.c1.w, ULPs: {ulp}"); return; } if (expected is double2 && result is double2) { var expectedF = (double2)expected; var resultF = (double2)result; Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); return; } if (expected is double3 && result is double3) { var expectedF = (double3)expected; var resultF = (double3)result; Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}"); return; } if (expected is double4 && result is double4) { var expectedF = (double4)expected; var resultF = (double4)result; Assert.True(NearEqualDouble(expectedF.x, resultF.x, maxUlp, out var ulp), $"Expected: {expectedF}.x != Result: {resultF}.x, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.y, resultF.y, maxUlp, out ulp), $"Expected: {expectedF}.y != Result: {resultF}.y, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.z, resultF.z, maxUlp, out ulp), $"Expected: {expectedF}.z != Result: {resultF}.z, ULPs: {ulp}"); Assert.True(NearEqualDouble(expectedF.w, resultF.w, maxUlp, out ulp), $"Expected: {expectedF}.w != Result: {resultF}.w, ULPs: {ulp}"); return; } if (expected is v64 && result is v64) { if (!AreVectorsEqual((v64)expected, (v64)result)) { Assert.Fail(FormatVectorFailure64((v64)expected, (v64)result)); } return; } if (expected is v128 && result is v128) { if (!AreVectorsEqual((v128)expected, (v128)result)) { Assert.Fail(FormatVectorFailure128((v128)expected, (v128)result)); } return; } if (expected is v64x2 && result is v64x2) { if (!AreVectorsEqual(((v64x2)expected).v64_0, ((v64x2)result).v64_0)) { Assert.Fail("First component of v64x2 differs: " + FormatVectorFailure64(((v64x2)expected).v64_0, ((v64x2)result).v64_0)); } if (!AreVectorsEqual(((v64x2)expected).v64_1, ((v64x2)result).v64_1)) { Assert.Fail("Second component of v64x2 differs: " + FormatVectorFailure64(((v64x2)expected).v64_1, ((v64x2)result).v64_1)); } return; } if (expected is v64x3 && result is v64x3) { if (!AreVectorsEqual(((v64x3)expected).v64_0, ((v64x3)result).v64_0)) { Assert.Fail("First component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_0, ((v64x3)result).v64_0)); } if (!AreVectorsEqual(((v64x3)expected).v64_1, ((v64x3)result).v64_1)) { Assert.Fail("Second component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_1, ((v64x3)result).v64_1)); } if (!AreVectorsEqual(((v64x3)expected).v64_2, ((v64x3)result).v64_2)) { Assert.Fail("Third component of v64x3 differs: " + FormatVectorFailure64(((v64x3)expected).v64_2, ((v64x3)result).v64_2)); } return; } if (expected is v64x4 && result is v64x4) { if (!AreVectorsEqual(((v64x4)expected).v64_0, ((v64x4)result).v64_0)) { Assert.Fail("First component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_0, ((v64x4)result).v64_0)); } if (!AreVectorsEqual(((v64x4)expected).v64_1, ((v64x4)result).v64_1)) { Assert.Fail("Second component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_1, ((v64x4)result).v64_1)); } if (!AreVectorsEqual(((v64x4)expected).v64_2, ((v64x4)result).v64_2)) { Assert.Fail("Third component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_2, ((v64x4)result).v64_2)); } if (!AreVectorsEqual(((v64x4)expected).v64_3, ((v64x4)result).v64_3)) { Assert.Fail("Fourth component of v64x4 differs: " + FormatVectorFailure64(((v64x4)expected).v64_3, ((v64x4)result).v64_3)); } return; } if (expected is v128x2 && result is v128x2) { if (!AreVectorsEqual(((v128x2)expected).v128_0, ((v128x2)result).v128_0)) { Assert.Fail("First component of v128x2 differs: " + FormatVectorFailure128(((v128x2)expected).v128_0, ((v128x2)result).v128_0)); } if (!AreVectorsEqual(((v128x2)expected).v128_1, ((v128x2)result).v128_1)) { Assert.Fail("Second component of v128x2 differs: " + FormatVectorFailure128(((v128x2)expected).v128_1, ((v128x2)result).v128_1)); } return; } if (expected is v128x3 && result is v128x3) { if (!AreVectorsEqual(((v128x3)expected).v128_0, ((v128x3)result).v128_0)) { Assert.Fail("First component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_0, ((v128x3)result).v128_0)); } if (!AreVectorsEqual(((v128x3)expected).v128_1, ((v128x3)result).v128_1)) { Assert.Fail("Second component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_1, ((v128x3)result).v128_1)); } if (!AreVectorsEqual(((v128x3)expected).v128_2, ((v128x3)result).v128_2)) { Assert.Fail("Third component of v128x3 differs: " + FormatVectorFailure128(((v128x3)expected).v128_2, ((v128x3)result).v128_2)); } return; } if (expected is v128x4 && result is v128x4) { if (!AreVectorsEqual(((v128x4)expected).v128_0, ((v128x4)result).v128_0)) { Assert.Fail("First component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_0, ((v128x4)result).v128_0)); } if (!AreVectorsEqual(((v128x4)expected).v128_1, ((v128x4)result).v128_1)) { Assert.Fail("Second component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_1, ((v128x4)result).v128_1)); } if (!AreVectorsEqual(((v128x4)expected).v128_2, ((v128x4)result).v128_2)) { Assert.Fail("Third component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_2, ((v128x4)result).v128_2)); } if (!AreVectorsEqual(((v128x4)expected).v128_3, ((v128x4)result).v128_3)) { Assert.Fail("Fourth component of v128x4 differs: " + FormatVectorFailure128(((v128x4)expected).v128_3, ((v128x4)result).v128_3)); } return; } if (expected is v256 && result is v256) { if (!AreVectorsEqual((v256)expected, (v256)result)) { Assert.Fail(FormatVectorFailure256((v256)expected, (v256)result)); } return; } #endif Assert.AreEqual(expected, result); } #if BURST_INTERNAL private unsafe static string FormatVectorFailure64(v64 expected, v64 result) { var b = new StringBuilder(); b.AppendLine("64-bit vectors differ!"); b.AppendLine("Expected:"); FormatVector(b, (void*)&expected, 8); b.AppendLine(); b.AppendLine("But was :"); FormatVector(b, (void*)&result, 8); b.AppendLine(); return b.ToString(); } private unsafe static string FormatVectorFailure128(v128 expected, v128 result) { var b = new StringBuilder(); b.AppendLine("128-bit vectors differ!"); b.AppendLine("Expected:"); FormatVector(b, (void*)&expected, 16); b.AppendLine(); b.AppendLine("But was :"); FormatVector(b, (void*)&result, 16); b.AppendLine(); return b.ToString(); } private unsafe static string FormatVectorFailure256(v256 expected, v256 result) { var b = new StringBuilder(); b.AppendLine("256-bit vectors differ!"); b.AppendLine("Expected:"); FormatVector(b, (void*)&expected, 32); b.AppendLine(); b.AppendLine("But was :"); FormatVector(b, (void*)&result, 32); b.AppendLine(); return b.ToString(); } private unsafe static void FormatVector(StringBuilder b, void* v, int bytes) { b.Append("Double: "); for (int i = 0; i < bytes / 8; ++i) { if (i > 0) b.AppendFormat(" | "); b.AppendFormat("{0:G17}", ((double*)v)[i]); } b.AppendLine(); b.Append("Float : "); for (int i = 0; i < bytes / 4; ++i) { if (i > 0) b.AppendFormat(" | "); b.AppendFormat("{0:G15}", ((float*)v)[i]); } b.AppendLine(); b.Append("UInt32: "); for (int i = 0; i < bytes / 4; ++i) { if (i > 0) b.AppendFormat(" | "); b.AppendFormat("{0:X8}", ((uint*)v)[i]); } b.AppendLine(); } #endif /// /// The value for which all absolute numbers smaller than are considered equal to zero. /// public const float ZeroTolerance = 4 * float.Epsilon; /// /// The value for which all absolute numbers smaller than are considered equal to zero. /// public const double ZeroToleranceDouble = 4 * double.Epsilon; public static bool NearEqualFloat(float a, float b, int maxUlp, out int ulp) { ulp = 0; if (Math.Abs(a - b) < ZeroTolerance) return true; ulp = GetUlpFloatDistance(a, b); return ulp <= maxUlp; } public static unsafe int GetUlpFloatDistance(float a, float b) { // Save work if the floats are equal. // Also handles +0 == -0 if (a == b) { return 0; } if (float.IsNaN(a) && float.IsNaN(b)) { return 0; } if (float.IsInfinity(a) && float.IsInfinity(b)) { return 0; } int aInt = *(int*)&a; int bInt = *(int*)&b; if ((aInt < 0) != (bInt < 0)) return int.MaxValue; // Because we would have an overflow below while trying to do -(int.MinValue) // We modify it here so that we don't overflow var ulp = (long)aInt - bInt; if (ulp <= int.MinValue) return int.MaxValue; if (ulp > int.MaxValue) return int.MaxValue; // We know for sure that numbers are in the range ]int.MinValue, int.MaxValue] return (int)Math.Abs(ulp); } public static bool NearEqualDouble(double a, double b, int maxUlp, out long ulp) { ulp = 0; if (Math.Abs(a - b) < ZeroTolerance) return true; ulp = GetUlpDoubleDistance(a, b); return ulp <= maxUlp; } private static readonly long LongMinValue = long.MinValue; private static readonly long LongMaxValue = long.MaxValue; public static unsafe long GetUlpDoubleDistance(double a, double b) { // Save work if the floats are equal. // Also handles +0 == -0 if (a == b) { return 0; } if (double.IsNaN(a) && double.IsNaN(b)) { return 0; } if (double.IsInfinity(a) && double.IsInfinity(b)) { return 0; } long aInt = *(long*)&a; long bInt = *(long*)&b; if ((aInt < 0) != (bInt < 0)) return long.MaxValue; var ulp = aInt - bInt; if (ulp <= LongMinValue) return long.MaxValue; if (ulp > LongMaxValue) return long.MaxValue; return Math.Abs((long)ulp); } /// /// Determines whether the specified value is close to zero (0.0f). /// /// The floating value. /// true if the specified value is close to zero (0.0f); otherwise, false. public static bool IsZero(float a) { return Math.Abs(a) < ZeroTolerance; } /// /// Determines whether the specified value is close to zero (0.0f). /// /// The floating value. /// true if the specified value is close to zero (0.0f); otherwise, false. public static bool IsZero(double a) { return Math.Abs(a) < ZeroToleranceDouble; } } }