using System.Runtime.CompilerServices; using Unity.Burst; #if !NET_DOTS using Unity.Burst.Intrinsics; #endif using Unity.Collections.LowLevel.Unsafe; using Unity.Mathematics; using UnityEngine; #if UNITY_EDITOR using UnityEditor; #endif namespace Unity.Collections { /// /// A feature complete hashing API based on xxHash3 (https://github.com/Cyan4973/xxHash) /// /// /// Features: /// - Compute 64bits or 128bits hash keys, based on a private key, with an optional given seed value. /// - Hash on buffer (with or without a ulong based seed value) /// - Hash on buffer while copying the data to a destination /// - Use instances of to accumulate data to hash in multiple calls, suited for small data, then retrieve the hash key at the end. /// - xxHash3 has several implementation based on the size to hash to ensure best performances /// - We currently have two implementations: /// - A generic one based on Unity.Mathematics, that should always be executed compiled with Burst. /// - An AVX2 based implementation for platforms supporting it, using Burst intrinsics. /// - Whether or not the call site is compiled with burst, the hashing function will be executed by Burst(*) to ensure optimal performance. /// (*) Only when the hashing size justifies such transition. /// [BurstCompile] [BurstCompatible] public static partial class xxHash3 { #region Public API /// /// Compute a 64bits hash of a memory region /// /// The memory buffer, can't be null /// The length of the memory buffer, can be zero /// The hash result public static unsafe uint2 Hash64(void* input, long length) { fixed (void* secret = xxHashDefaultKey.kSecret) { return ToUint2(Hash64Internal((byte*) input, null, length, (byte*) secret, 0)); } } /// /// Compute a 64bits hash from the contents of the input struct /// /// The input type. /// The input struct that will be hashed /// The hash result [BurstCompatible(GenericTypeArguments = new [] { typeof(int) })] public static unsafe uint2 Hash64(in T input) where T : unmanaged { return Hash64(UnsafeUtilityExtensions.AddressOf(input), UnsafeUtility.SizeOf()); } /// /// Compute a 64bits hash of a memory region using a given seed value /// /// The memory buffer, can't be null /// The length of the memory buffer, can be zero /// The seed value to alter the hash computation from /// The hash result public static unsafe uint2 Hash64(void* input, long length, ulong seed) { fixed (byte* secret = xxHashDefaultKey.kSecret) { return ToUint2(Hash64Internal((byte*) input, null, length, secret, seed)); } } /// /// Compute a 128bits hash of a memory region /// /// The memory buffer, can't be null /// The length of the memory buffer, can be zero /// The hash result public static unsafe uint4 Hash128(void* input, long length) { fixed (void* secret = xxHashDefaultKey.kSecret) { Hash128Internal((byte*) input, null, length, (byte*) secret, 0, out var result); return result; } } /// /// Compute a 128bits hash from the contents of the input struct /// /// The input type. /// The input struct that will be hashed /// The hash result [BurstCompatible(GenericTypeArguments = new [] { typeof(int) })] public static unsafe uint4 Hash128(in T input) where T : unmanaged { return Hash128(UnsafeUtilityExtensions.AddressOf(input), UnsafeUtility.SizeOf()); } /// /// Compute a 128bits hash while copying the data to a destination buffer /// /// The memory buffer to compute the hash and copy from, can't be null /// The destination buffer, can't be null and must be at least big enough to match the input's length /// The length of the memory buffer, can be zero /// The hash result /// Use this API to avoid a double memory scan in situations where the hash as to be compute and the data copied at the same time. Performances improvements vary between 30-50% on /// big data. public static unsafe uint4 Hash128(void* input, void* destination, long length) { fixed (byte* secret = xxHashDefaultKey.kSecret) { Hash128Internal((byte*) input, (byte*) destination, length, secret, 0, out var result); return result; } } /// /// Compute a 128bits hash of a memory region using a given seed value /// /// The memory buffer, can't be null /// The length of the memory buffer, can be zero /// The seed value to alter the hash computation from /// The hash result public static unsafe uint4 Hash128(void* input, long length, ulong seed) { fixed (byte* secret = xxHashDefaultKey.kSecret) { Hash128Internal((byte*) input, null, length, secret, seed, out var result); return result; } } /// /// Compute a 128bits hash while copying the data to a destination buffer using a given seed value /// /// The memory buffer to compute the hash and copy from, can't be null /// The destination buffer, can't be null and must be at least big enough to match the input's length /// The length of the memory buffer, can be zero /// The seed value to alter the hash computation from /// The hash result public static unsafe uint4 Hash128(void* input, void* destination, long length, ulong seed) { fixed (byte* secret = xxHashDefaultKey.kSecret) { Hash128Internal((byte*) input, (byte*) destination, length, secret, seed, out var result); return result; } } #endregion #region Constants private const int STRIPE_LEN = 64; private const int ACC_NB = STRIPE_LEN / 8; // Accumulators are ulong sized private const int SECRET_CONSUME_RATE = 8; private const int SECRET_KEY_SIZE = 192; private const int SECRET_KEY_MIN_SIZE = 136; private const int SECRET_LASTACC_START = 7; private const int NB_ROUNDS = (SECRET_KEY_SIZE - STRIPE_LEN) / SECRET_CONSUME_RATE; private const int BLOCK_LEN = STRIPE_LEN * NB_ROUNDS; private const uint PRIME32_1 = 0x9E3779B1U; private const uint PRIME32_2 = 0x85EBCA77U; private const uint PRIME32_3 = 0xC2B2AE3DU; // static readonly uint PRIME32_4 = 0x27D4EB2FU; private const uint PRIME32_5 = 0x165667B1U; private const ulong PRIME64_1 = 0x9E3779B185EBCA87UL; private const ulong PRIME64_2 = 0xC2B2AE3D27D4EB4FUL; private const ulong PRIME64_3 = 0x165667B19E3779F9UL; private const ulong PRIME64_4 = 0x85EBCA77C2B2AE63UL; private const ulong PRIME64_5 = 0x27D4EB2F165667C5UL; private const int MIDSIZE_MAX = 240; private const int MIDSIZE_STARTOFFSET = 3; private const int MIDSIZE_LASTOFFSET = 17; private const int SECRET_MERGEACCS_START = 11; #endregion private struct ulong2 { public ulong x; public ulong y; public ulong2(ulong x, ulong y) { this.x = x; this.y = y; } } internal static unsafe ulong Hash64Internal(byte* input, byte* dest, long length, byte* secret, ulong seed) { if (length < 16) { return Hash64Len0To16(input, length, secret, seed); } if (length < 128) { return Hash64Len17To128(input, length, secret, seed); } if (length < MIDSIZE_MAX) { return Hash64Len129To240(input, length, secret, seed); } if (seed != 0) { var newSecret = (byte*) Memory.Unmanaged.Allocate(SECRET_KEY_SIZE, 64, Allocator.Temp); EncodeSecretKey(newSecret, secret, seed); var result = Hash64Long(input, dest, length, newSecret); Memory.Unmanaged.Free(newSecret, Allocator.Temp); return result; } else { return Hash64Long(input, dest, length, secret); } } internal static unsafe void Hash128Internal(byte* input, byte* dest, long length, byte* secret, ulong seed, out uint4 result) { if (dest != null && length < MIDSIZE_MAX) { UnsafeUtility.MemCpy(dest, input, length); } if (length < 16) { Hash128Len0To16(input, length, secret, seed, out result); return; } if (length < 128) { Hash128Len17To128(input, length, secret, seed, out result); return; } if (length < MIDSIZE_MAX) { Hash128Len129To240(input, length, secret, seed, out result); return; } if (seed != 0) { var addr = stackalloc byte[SECRET_KEY_SIZE + 31]; // Aligned the allocated address on 32 bytes var newSecret = (byte*) ((ulong) addr + 31 & 0xFFFFFFFFFFFFFFE0); EncodeSecretKey(newSecret, secret, seed); Hash128Long(input, dest, length, newSecret, out result); } else { Hash128Long(input, dest, length, secret, out result); } } #region 64-bits hash, size dependent implementations private static unsafe ulong Hash64Len1To3(byte* input, long len, byte* secret, ulong seed) { unchecked { var c1 = input[0]; var c2 = input[len >> 1]; var c3 = input[len - 1]; var combined = ((uint)c1 << 16) | ((uint)c2 << 24) | ((uint)c3 << 0) | ((uint)len << 8); ulong bitflip = (Read32LE(secret) ^ Read32LE(secret+4)) + seed; ulong keyed = (ulong)combined ^ bitflip; return AvalancheH64(keyed); } } private static unsafe ulong Hash64Len4To8(byte* input, long length, byte* secret, ulong seed) { unchecked { seed ^= (ulong)Swap32((uint)seed) << 32; var input1 = Read32LE(input); var input2 = Read32LE(input + length - 4); var bitflip = (Read64LE(secret+8) ^ Read64LE(secret+16)) - seed; var input64 = input2 + (((ulong)input1) << 32); var keyed = input64 ^ bitflip; return rrmxmx(keyed, (ulong)length); } } private static unsafe ulong Hash64Len9To16(byte* input, long length, byte* secret, ulong seed) { unchecked { var bitflip1 = (Read64LE(secret+24) ^ Read64LE(secret+32)) + seed; var bitflip2 = (Read64LE(secret+40) ^ Read64LE(secret+48)) - seed; var input_lo = Read64LE(input) ^ bitflip1; var input_hi = Read64LE(input + length - 8) ^ bitflip2; var acc = (ulong)length + Swap64(input_lo) + input_hi + Mul128Fold64(input_lo, input_hi); return Avalanche(acc); } } private static unsafe ulong Hash64Len0To16(byte* input, long length, byte* secret, ulong seed) { if (length > 8) { return Hash64Len9To16(input, length, secret, seed); } if (length >= 4) { return Hash64Len4To8(input, length, secret, seed); } if (length > 0) { return Hash64Len1To3(input, length, secret, seed); } return AvalancheH64(seed ^ (Read64LE(secret+56) ^ Read64LE(secret+64))); } private static unsafe ulong Hash64Len17To128(byte* input, long length, byte* secret, ulong seed) { unchecked { var acc = (ulong) length * PRIME64_1; if (length > 32) { if (length > 64) { if (length > 96) { acc += Mix16(input + 48, secret + 96, seed); acc += Mix16(input + length - 64, secret + 112, seed); } acc += Mix16(input + 32, secret + 64, seed); acc += Mix16(input + length - 48, secret + 80, seed); } acc += Mix16(input + 16, secret + 32, seed); acc += Mix16(input + length - 32, secret + 48, seed); } acc += Mix16(input + 0, secret + 0, seed); acc += Mix16(input + length - 16, secret + 16, seed); return Avalanche(acc); } } private static unsafe ulong Hash64Len129To240(byte* input, long length, byte* secret, ulong seed) { unchecked { var acc = (ulong) length * PRIME64_1; var nbRounds = (int) length / 16; for (var i = 0; i < 8; i++) { acc += Mix16(input + (16 * i), secret + (16 * i), seed); } acc = Avalanche(acc); for (var i = 8; i < nbRounds; i++) { acc += Mix16(input + (16 * i), secret + (16 * (i - 8)) + MIDSIZE_STARTOFFSET, seed); } acc += Mix16(input + length - 16, secret + SECRET_KEY_MIN_SIZE - MIDSIZE_LASTOFFSET, seed); return Avalanche(acc); } } [BurstCompile] private static unsafe ulong Hash64Long(byte* input, byte* dest, long length, byte* secret) { var addr = stackalloc byte[STRIPE_LEN + 31]; var acc = (ulong*) ((ulong) addr + 31 & 0xFFFFFFFFFFFFFFE0); // Aligned the allocated address on 32 bytes acc[0] = PRIME32_3; acc[1] = PRIME64_1; acc[2] = PRIME64_2; acc[3] = PRIME64_3; acc[4] = PRIME64_4; acc[5] = PRIME32_2; acc[6] = PRIME64_5; acc[7] = PRIME32_1; unchecked { #if !NET_DOTS if (X86.Avx2.IsAvx2Supported) { Avx2HashLongInternalLoop(acc, input, dest, length, secret, 1); } else #endif { DefaultHashLongInternalLoop(acc, input, dest, length, secret, 1); } return MergeAcc(acc, secret + SECRET_MERGEACCS_START, (ulong) length * PRIME64_1); } } #endregion #region 128-bits hash, size dependent implementations private static unsafe void Hash128Len1To3(byte* input, long length, byte* secret, ulong seed, out uint4 result) { unchecked { var c1 = input[0]; var c2 = input[length >> 1]; var c3 = input[length - 1]; var combinedl = ((uint) c1 << 16) + (((uint) c2) << 24) + (((uint) c3) << 0) + (((uint) length) << 8); var combinedh = RotL32(Swap32(combinedl), 13); var bitflipl = (Read32LE(secret) ^ Read32LE(secret+4)) + seed; var bitfliph = (Read32LE(secret+8) ^ Read32LE(secret+12)) - seed; var keyed_lo = combinedl ^ bitflipl; var keyed_hi = combinedh ^ bitfliph; result = ToUint4(AvalancheH64(keyed_lo), AvalancheH64(keyed_hi)); } } private static unsafe void Hash128Len4To8(byte* input, long len, byte* secret, ulong seed, out uint4 result) { unchecked { seed ^= (ulong)Swap32((uint)seed) << 32; var input_lo = Read32LE(input); var input_hi = Read32LE(input + len - 4); var input_64 = input_lo + ((ulong)input_hi << 32); var bitflip = (Read64LE(secret+16) ^ Read64LE(secret+24)) + seed; var keyed = input_64 ^ bitflip; var low = Common.umul128(keyed, PRIME64_1 + (ulong)(len << 2), out var high); high += (low << 1); low ^= (high >> 3); low = XorShift64(low, 35); low*= 0x9FB21C651E98DF25UL; low = XorShift64(low, 28); high = Avalanche(high); result = ToUint4(low, high); } } private static unsafe void Hash128Len9To16(byte* input, long len, byte* secret, ulong seed, out uint4 result) { unchecked { var bitflipl = (Read64LE(secret+32) ^ Read64LE(secret+40)) - seed; var bitfliph = (Read64LE(secret+48) ^ Read64LE(secret+56)) + seed; var input_lo = Read64LE(input); var input_hi = Read64LE(input + len - 8); var low = Common.umul128(input_lo ^ input_hi ^ bitflipl, PRIME64_1, out var high); low += (ulong)(len - 1) << 54; input_hi ^= bitfliph; high += input_hi + Mul32To64((uint)input_hi, PRIME32_2 - 1); low ^= Swap64(high); var hlow = Common.umul128(low, PRIME64_2, out var hhigh); hhigh += high * PRIME64_2; result = ToUint4(Avalanche(hlow), Avalanche(hhigh)); } } private static unsafe void Hash128Len0To16(byte* input, long length, byte* secret, ulong seed, out uint4 result) { if (length > 8) { Hash128Len9To16(input, length, secret, seed, out result); return; } if (length >= 4) { Hash128Len4To8(input, length, secret, seed, out result); return; } if (length > 0) { Hash128Len1To3(input, length, secret, seed, out result); return; } var bitflipl = Read64LE(secret+64) ^ Read64LE(secret+72); var bitfliph = Read64LE(secret+80) ^ Read64LE(secret+88); var low = AvalancheH64(seed ^ bitflipl); var hi = AvalancheH64( seed ^ bitfliph); result = ToUint4(low, hi); } private static unsafe void Hash128Len17To128(byte* input, long length, byte* secret, ulong seed, out uint4 result) { unchecked { var acc = new ulong2((ulong) length * PRIME64_1, 0); if (length > 32) { if (length > 64) { if (length > 96) { acc = Mix32(acc, input + 48, input + length - 64, secret + 96, seed); } acc = Mix32(acc, input + 32, input + length - 48, secret + 64, seed); } acc = Mix32(acc, input + 16, input + length - 32, secret + 32, seed); } acc = Mix32(acc, input, input + length - 16, secret, seed); var low64 = acc.x + acc.y; var high64 = acc.x * PRIME64_1 + acc.y * PRIME64_4 + ((ulong) length - seed) * PRIME64_2; result = ToUint4(Avalanche(low64), 0ul - Avalanche(high64)); } } private static unsafe void Hash128Len129To240(byte* input, long length, byte* secret, ulong seed, out uint4 result) { unchecked { var acc = new ulong2((ulong) length * PRIME64_1, 0); var nbRounds = length / 32; int i; for (i = 0; i < 4; i++) { acc = Mix32(acc, input + 32 * i, input + 32 * i + 16, secret + 32 * i, seed); } acc.x = Avalanche(acc.x); acc.y = Avalanche(acc.y); for (i = 4; i < nbRounds; i++) { acc = Mix32(acc, input + 32 * i, input + 32 * i + 16, secret + MIDSIZE_STARTOFFSET + 32 * (i - 4), seed); } acc = Mix32(acc, input + length - 16, input + length - 32, secret + SECRET_KEY_MIN_SIZE - MIDSIZE_LASTOFFSET - 16, 0UL - seed); var low64 = acc.x + acc.y; var high64 = acc.x * PRIME64_1 + acc.y * PRIME64_4 + ((ulong) length - seed) * PRIME64_2; result = ToUint4(Avalanche(low64), 0ul - Avalanche(high64)); } } [BurstCompile] private static unsafe void Hash128Long(byte* input, byte* dest, long length, byte* secret, out uint4 result) { // var acc = stackalloc ulong[ACC_NB]; var addr = stackalloc byte[STRIPE_LEN + 31]; var acc = (ulong*) ((ulong) addr + 31 & 0xFFFFFFFFFFFFFFE0); // Aligned the allocated address on 32 bytes acc[0] = PRIME32_3; acc[1] = PRIME64_1; acc[2] = PRIME64_2; acc[3] = PRIME64_3; acc[4] = PRIME64_4; acc[5] = PRIME32_2; acc[6] = PRIME64_5; acc[7] = PRIME32_1; unchecked { #if !NET_DOTS if (X86.Avx2.IsAvx2Supported) { Avx2HashLongInternalLoop(acc, input, dest, length, secret, 0); } else #endif { DefaultHashLongInternalLoop(acc, input, dest, length, secret, 0); } var low64 = MergeAcc(acc, secret + SECRET_MERGEACCS_START, (ulong) length * PRIME64_1); var high64 = MergeAcc(acc, secret + SECRET_KEY_SIZE - 64 - SECRET_MERGEACCS_START, ~((ulong) length * PRIME64_2)); result = ToUint4(low64, high64); } } #endregion #region Internal helpers internal static uint2 ToUint2(ulong u) { return new uint2((uint)(u & 0xFFFFFFFF), (uint)(u >> 32)); } internal static uint4 ToUint4(ulong ul0, ulong ul1) { return new uint4((uint)(ul0 & 0xFFFFFFFF), (uint)(ul0 >> 32), (uint)(ul1 & 0xFFFFFFFF), (uint)(ul1 >> 32)); } internal static unsafe void EncodeSecretKey(byte* dst, byte* secret, ulong seed) { unchecked { var seedInitCount = SECRET_KEY_SIZE / (8 * 2); for (var i = 0; i < seedInitCount; i++) { Write64LE(dst + 16 * i + 0, Read64LE(secret + 16 * i + 0) + seed); Write64LE(dst + 16 * i + 8, Read64LE(secret + 16 * i + 8) - seed); } } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe ulong Read64LE(void* addr) => *(ulong*) addr; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe uint Read32LE(void* addr) => *(uint*) addr; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe void Write64LE(void* addr, ulong value) => *(ulong*) addr = value; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe void Read32LE(void* addr, uint value) => *(uint*) addr = value; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Mul32To64(uint x, uint y) => (ulong) x * y; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Swap64(ulong x) { return ((x << 56) & 0xff00000000000000UL) | ((x << 40) & 0x00ff000000000000UL) | ((x << 24) & 0x0000ff0000000000UL) | ((x << 8) & 0x000000ff00000000UL) | ((x >> 8) & 0x00000000ff000000UL) | ((x >> 24) & 0x0000000000ff0000UL) | ((x >> 40) & 0x000000000000ff00UL) | ((x >> 56) & 0x00000000000000ffUL); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static uint Swap32(uint x) { return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static uint RotL32(uint x, int r) => (((x) << (r)) | ((x) >> (32 - (r)))); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong RotL64(ulong x, int r) => (((x) << (r)) | ((x) >> (64 - (r)))); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong XorShift64(ulong v64, int shift) { return v64 ^ (v64 >> shift); } #if NET_DOTS private static class Common { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static ulong umul128(ulong x, ulong y, out ulong high) { // Split the inputs into high/low sections. ulong xLo = (uint)x; var xHi = x >> 32; ulong yLo = (uint)y; var yHi = y >> 32; // We have to use 4 multiples to compute the full range of the result. var hi = xHi * yHi; var m1 = xHi * yLo; var m2 = yHi * xLo; var lo = xLo * yLo; ulong m1Lo = (uint)m1; var loHi = lo >> 32; var m1Hi = m1 >> 32; high = hi + m1Hi + ((loHi + m1Lo + m2) >> 32); return x * y; } } #endif [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Mul128Fold64(ulong lhs, ulong rhs) { var lo = Common.umul128(lhs, rhs, out var hi); return lo ^ hi; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe ulong Mix16(byte* input, byte* secret, ulong seed) { var input_lo = Read64LE(input); var input_hi = Read64LE(input + 8); return Mul128Fold64( input_lo ^ (Read64LE(secret + 0) + seed), input_hi ^ (Read64LE(secret + 8) - seed)); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe ulong2 Mix32(ulong2 acc, byte* input_1, byte* input_2, byte* secret, ulong seed) { unchecked { var l0 = acc.x + Mix16(input_1, secret + 0, seed); l0 ^= Read64LE(input_2) + Read64LE(input_2 + 8); var l1 = acc.y + Mix16(input_2, secret + 16, seed); l1 ^= Read64LE(input_1) + Read64LE(input_1 + 8); return new ulong2(l0, l1); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong Avalanche(ulong h64) { unchecked { h64 = XorShift64(h64, 37); h64 *= 0x165667919E3779F9UL; h64 = XorShift64(h64, 32); return h64; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong AvalancheH64(ulong h64) { unchecked { h64 ^= h64 >> 33; h64 *= PRIME64_2; h64 ^= h64 >> 29; h64 *= PRIME64_3; h64 ^= h64 >> 32; return h64; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static ulong rrmxmx(ulong h64, ulong length) { h64 ^= RotL64(h64, 49) ^ RotL64(h64, 24); h64 *= 0x9FB21C651E98DF25UL; h64 ^= (h64 >> 35) + length ; h64 *= 0x9FB21C651E98DF25UL; return XorShift64(h64, 28); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe ulong Mix2Acc(ulong acc0, ulong acc1, byte* secret) { return Mul128Fold64(acc0 ^ Read64LE(secret), acc1 ^ Read64LE(secret+8)); } internal static unsafe ulong MergeAcc(ulong* acc, byte* secret, ulong start) { unchecked { var result64 = start; result64 += Mix2Acc(acc[0], acc[1], secret + 0); result64 += Mix2Acc(acc[2], acc[3], secret + 16); result64 += Mix2Acc(acc[4], acc[5], secret + 32); result64 += Mix2Acc(acc[6], acc[7], secret + 48); return Avalanche(result64); } } #endregion #region Default Implementation private static unsafe void DefaultHashLongInternalLoop(ulong* acc, byte* input, byte* dest, long length, byte* secret, int isHash64) { // Process packets of 512 bits var nb_blocks = (length-1) / BLOCK_LEN; for (int n = 0; n < nb_blocks; n++) { DefaultAccumulate(acc, input + n * BLOCK_LEN, dest == null ? null : dest + n * BLOCK_LEN, secret, NB_ROUNDS, isHash64); DefaultScrambleAcc(acc, secret + SECRET_KEY_SIZE - STRIPE_LEN); } var nbStripes = ((length-1) - (BLOCK_LEN * nb_blocks)) / STRIPE_LEN; DefaultAccumulate(acc, input + nb_blocks * BLOCK_LEN, dest == null ? null : dest + nb_blocks * BLOCK_LEN, secret, nbStripes, isHash64); var p = input + length - STRIPE_LEN; DefaultAccumulate512(acc, p, null, secret + SECRET_KEY_SIZE - STRIPE_LEN - SECRET_LASTACC_START, isHash64); if (dest != null) { var remaining = length % STRIPE_LEN; if (remaining != 0) { UnsafeUtility.MemCpy(dest + length - remaining, input + length - remaining, remaining); } } } internal static unsafe void DefaultAccumulate(ulong* acc, byte* input, byte* dest, byte* secret, long nbStripes, int isHash64) { for (int n = 0; n < nbStripes; n++) { DefaultAccumulate512(acc, input + n * STRIPE_LEN, dest == null ? null : dest + n * STRIPE_LEN, secret + n * SECRET_CONSUME_RATE, isHash64); } } internal static unsafe void DefaultAccumulate512(ulong* acc, byte* input, byte* dest, byte* secret, int isHash64) { var count = ACC_NB; for (var i = 0; i < count; i++) { var data_val = Read64LE(input + 8 * i); var data_key = data_val ^ Read64LE(secret + i * 8); if (dest != null) { Write64LE(dest + 8 * i, data_val); } acc[i ^ 1] += data_val; acc[i] += Mul32To64((uint) (data_key & 0xFFFFFFFF), (uint) (data_key >> 32)); } } internal static unsafe void DefaultScrambleAcc(ulong* acc, byte* secret) { for (var i = 0; i < ACC_NB; i++) { var key64 = Read64LE(secret + 8 * i); var acc64 = acc[i]; acc64 = XorShift64(acc64, 47); acc64 ^= key64; acc64 *= PRIME32_1; acc[i] = acc64; } } #endregion } static class xxHashDefaultKey { // The default xxHash3 encoding key, other implementations of this algorithm should use the same key to produce identical hashes public static readonly byte[] kSecret = { 0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c, 0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f, 0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21, 0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c, 0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3, 0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8, 0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d, 0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64, 0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb, 0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e, 0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce, 0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e, }; } }