Firstborn/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/Refraction.hlsl

71 lines
2.2 KiB
HLSL
Raw Normal View History

2023-03-28 13:24:16 -04:00
#ifndef UNITY_REFRACTION_INCLUDED
#define UNITY_REFRACTION_INCLUDED
//-----------------------------------------------------------------------------
// Util refraction
//-----------------------------------------------------------------------------
struct RefractionModelResult
{
real dist; // length of the transmission during refraction through the shape
float3 positionWS; // out ray position
real3 rayWS; // out ray direction
};
RefractionModelResult RefractionModelSphere(real3 V, float3 positionWS, real3 normalWS, real ior, real thickness)
{
// Sphere shape model:
// We approximate locally the shape of the object as sphere, that is tangent to the shape.
// The sphere has a diameter of {thickness}
// The center of the sphere is at {positionWS} - {normalWS} * {thickness} * 0.5
//
// So the light is refracted twice: in and out of the tangent sphere
// First refraction (tangent sphere in)
// Refracted ray
real3 R1 = refract(-V, normalWS, 1.0 / ior);
// Center of the tangent sphere
real3 C = positionWS - normalWS * thickness * 0.5;
// Second refraction (tangent sphere out)
real NoR1 = dot(normalWS, R1);
// Optical depth within the sphere
real dist = -NoR1 * thickness;
// Out hit point in the tangent sphere
real3 P1 = positionWS + R1 * dist;
// Out normal
real3 N1 = SafeNormalize(C - P1);
2023-03-28 13:24:16 -04:00
// Out refracted ray
real3 R2 = refract(R1, N1, ior);
real N1oR2 = dot(N1, R2);
real VoR1 = dot(V, R1);
RefractionModelResult result;
result.dist = dist;
result.positionWS = P1;
result.rayWS = R2;
return result;
}
RefractionModelResult RefractionModelBox(real3 V, float3 positionWS, real3 normalWS, real ior, real thickness)
{
// Plane shape model:
// We approximate locally the shape of the object as a plane with normal {normalWS} at {positionWS}
// with a thickness {thickness}
// Refracted ray
real3 R = refract(-V, normalWS, 1.0 / ior);
// Optical depth within the thin plane
real dist = thickness / max(dot(R, -normalWS), 1e-5f);
RefractionModelResult result;
result.dist = dist;
result.positionWS = positionWS + R * dist;
result.rayWS = -V;
return result;
}
#endif