115 lines
2.8 KiB
HLSL
115 lines
2.8 KiB
HLSL
|
#ifndef UNITY_RANDOM_INCLUDED
|
||
|
#define UNITY_RANDOM_INCLUDED
|
||
|
|
||
|
// Safe for GLES2: HLSLcc will emulate the missing operator ^, >> and rcp
|
||
|
float Hash(uint s)
|
||
|
{
|
||
|
s = s ^ 2747636419u;
|
||
|
s = s * 2654435769u;
|
||
|
s = s ^ (s >> 16);
|
||
|
s = s * 2654435769u;
|
||
|
s = s ^ (s >> 16);
|
||
|
s = s * 2654435769u;
|
||
|
return float(s) * rcp(4294967296.0); // 2^-32
|
||
|
}
|
||
|
|
||
|
#if !defined(SHADER_API_GLES)
|
||
|
|
||
|
// A single iteration of Bob Jenkins' One-At-A-Time hashing algorithm.
|
||
|
uint JenkinsHash(uint x)
|
||
|
{
|
||
|
x += (x << 10u);
|
||
|
x ^= (x >> 6u);
|
||
|
x += (x << 3u);
|
||
|
x ^= (x >> 11u);
|
||
|
x += (x << 15u);
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
// Compound versions of the hashing algorithm.
|
||
|
uint JenkinsHash(uint2 v)
|
||
|
{
|
||
|
return JenkinsHash(v.x ^ JenkinsHash(v.y));
|
||
|
}
|
||
|
|
||
|
uint JenkinsHash(uint3 v)
|
||
|
{
|
||
|
return JenkinsHash(v.x ^ JenkinsHash(v.yz));
|
||
|
}
|
||
|
|
||
|
uint JenkinsHash(uint4 v)
|
||
|
{
|
||
|
return JenkinsHash(v.x ^ JenkinsHash(v.yzw));
|
||
|
}
|
||
|
|
||
|
// Construct a float with half-open range [0, 1) using low 23 bits.
|
||
|
// All zeros yields 0, all ones yields the next smallest representable value below 1.
|
||
|
float ConstructFloat(int m) {
|
||
|
const int ieeeMantissa = 0x007FFFFF; // Binary FP32 mantissa bitmask
|
||
|
const int ieeeOne = 0x3F800000; // 1.0 in FP32 IEEE
|
||
|
|
||
|
m &= ieeeMantissa; // Keep only mantissa bits (fractional part)
|
||
|
m |= ieeeOne; // Add fractional part to 1.0
|
||
|
|
||
|
float f = asfloat(m); // Range [1, 2)
|
||
|
return f - 1; // Range [0, 1)
|
||
|
}
|
||
|
|
||
|
float ConstructFloat(uint m)
|
||
|
{
|
||
|
return ConstructFloat(asint(m));
|
||
|
}
|
||
|
|
||
|
// Pseudo-random value in half-open range [0, 1). The distribution is reasonably uniform.
|
||
|
// Ref: https://stackoverflow.com/a/17479300
|
||
|
float GenerateHashedRandomFloat(uint x)
|
||
|
{
|
||
|
return ConstructFloat(JenkinsHash(x));
|
||
|
}
|
||
|
|
||
|
float GenerateHashedRandomFloat(uint2 v)
|
||
|
{
|
||
|
return ConstructFloat(JenkinsHash(v));
|
||
|
}
|
||
|
|
||
|
float GenerateHashedRandomFloat(uint3 v)
|
||
|
{
|
||
|
return ConstructFloat(JenkinsHash(v));
|
||
|
}
|
||
|
|
||
|
float GenerateHashedRandomFloat(uint4 v)
|
||
|
{
|
||
|
return ConstructFloat(JenkinsHash(v));
|
||
|
}
|
||
|
|
||
|
float2 InitRandom(float2 input)
|
||
|
{
|
||
|
float2 r;
|
||
|
r.x = Hash(uint(input.x * UINT_MAX));
|
||
|
r.y = Hash(uint(input.y * UINT_MAX));
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
#endif // SHADER_API_GLES
|
||
|
|
||
|
//From Next Generation Post Processing in Call of Duty: Advanced Warfare [Jimenez 2014]
|
||
|
// http://advances.realtimerendering.com/s2014/index.html
|
||
|
float InterleavedGradientNoise(float2 pixCoord, int frameCount)
|
||
|
{
|
||
|
const float3 magic = float3(0.06711056f, 0.00583715f, 52.9829189f);
|
||
|
float2 frameMagicScale = float2(2.083f, 4.867f);
|
||
|
pixCoord += frameCount * frameMagicScale;
|
||
|
return frac(magic.z * frac(dot(pixCoord, magic.xy)));
|
||
|
}
|
||
|
|
||
|
// 32-bit Xorshift random number generator
|
||
|
uint XorShift(inout uint rngState)
|
||
|
{
|
||
|
rngState ^= rngState << 13;
|
||
|
rngState ^= rngState >> 17;
|
||
|
rngState ^= rngState << 5;
|
||
|
return rngState;
|
||
|
}
|
||
|
|
||
|
#endif // UNITY_RANDOM_INCLUDED
|