Firstborn/Library/PackageCache/com.unity.inputsystem@1.5.1/InputSystem/InputManagerStateMonitors.cs

460 lines
20 KiB
C#
Raw Normal View History

2023-03-28 13:24:16 -04:00
using System;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine.InputSystem.LowLevel;
using UnityEngine.InputSystem.Utilities;
namespace UnityEngine.InputSystem
{
internal partial class InputManager
{
// Indices correspond with those in m_Devices.
internal StateChangeMonitorsForDevice[] m_StateChangeMonitors;
private InlinedArray<StateChangeMonitorTimeout> m_StateChangeMonitorTimeouts;
////TODO: support combining monitors for bitfields
public void AddStateChangeMonitor(InputControl control, IInputStateChangeMonitor monitor, long monitorIndex, uint groupIndex)
{
Debug.Assert(m_DevicesCount > 0);
var device = control.device;
var deviceIndex = device.m_DeviceIndex;
Debug.Assert(deviceIndex != InputDevice.kInvalidDeviceIndex);
// Allocate/reallocate monitor arrays, if necessary.
// We lazy-sync it to array of devices.
if (m_StateChangeMonitors == null)
m_StateChangeMonitors = new StateChangeMonitorsForDevice[m_DevicesCount];
else if (m_StateChangeMonitors.Length <= deviceIndex)
Array.Resize(ref m_StateChangeMonitors, m_DevicesCount);
// If we have removed monitors
if (!isProcessingEvents && m_StateChangeMonitors[deviceIndex].needToCompactArrays)
m_StateChangeMonitors[deviceIndex].CompactArrays();
// Add record.
m_StateChangeMonitors[deviceIndex].Add(control, monitor, monitorIndex, groupIndex);
}
private void RemoveStateChangeMonitors(InputDevice device)
{
if (m_StateChangeMonitors == null)
return;
var deviceIndex = device.m_DeviceIndex;
Debug.Assert(deviceIndex != InputDevice.kInvalidDeviceIndex);
if (deviceIndex >= m_StateChangeMonitors.Length)
return;
m_StateChangeMonitors[deviceIndex].Clear();
// Clear timeouts pending on any control on the device.
for (var i = 0; i < m_StateChangeMonitorTimeouts.length; ++i)
if (m_StateChangeMonitorTimeouts[i].control?.device == device)
m_StateChangeMonitorTimeouts[i] = default;
}
public void RemoveStateChangeMonitor(InputControl control, IInputStateChangeMonitor monitor, long monitorIndex)
{
if (m_StateChangeMonitors == null)
return;
var device = control.device;
var deviceIndex = device.m_DeviceIndex;
// Ignore if device has already been removed.
if (deviceIndex == InputDevice.kInvalidDeviceIndex)
return;
// Ignore if there are no state monitors set up for the device.
if (deviceIndex >= m_StateChangeMonitors.Length)
return;
m_StateChangeMonitors[deviceIndex].Remove(monitor, monitorIndex, isProcessingEvents);
// Remove pending timeouts on the monitor.
for (var i = 0; i < m_StateChangeMonitorTimeouts.length; ++i)
if (m_StateChangeMonitorTimeouts[i].monitor == monitor &&
m_StateChangeMonitorTimeouts[i].monitorIndex == monitorIndex)
m_StateChangeMonitorTimeouts[i] = default;
}
public void AddStateChangeMonitorTimeout(InputControl control, IInputStateChangeMonitor monitor, double time, long monitorIndex, int timerIndex)
{
m_StateChangeMonitorTimeouts.Append(
new StateChangeMonitorTimeout
{
control = control,
time = time,
monitor = monitor,
monitorIndex = monitorIndex,
timerIndex = timerIndex,
});
}
public void RemoveStateChangeMonitorTimeout(IInputStateChangeMonitor monitor, long monitorIndex, int timerIndex)
{
var timeoutCount = m_StateChangeMonitorTimeouts.length;
for (var i = 0; i < timeoutCount; ++i)
{
////REVIEW: can we avoid the repeated array lookups without copying the struct out?
if (ReferenceEquals(m_StateChangeMonitorTimeouts[i].monitor, monitor)
&& m_StateChangeMonitorTimeouts[i].monitorIndex == monitorIndex
&& m_StateChangeMonitorTimeouts[i].timerIndex == timerIndex)
{
m_StateChangeMonitorTimeouts[i] = default;
break;
}
}
}
private void SortStateChangeMonitorsIfNecessary(int deviceIndex)
{
if (m_StateChangeMonitors != null && deviceIndex < m_StateChangeMonitors.Length &&
m_StateChangeMonitors[deviceIndex].needToUpdateOrderingOfMonitors)
m_StateChangeMonitors[deviceIndex].SortMonitorsByIndex();
}
public void SignalStateChangeMonitor(InputControl control, IInputStateChangeMonitor monitor)
{
var device = control.device;
var deviceIndex = device.m_DeviceIndex;
ref var monitorsForDevice = ref m_StateChangeMonitors[deviceIndex];
for (var i = 0; i < monitorsForDevice.signalled.length; ++i)
{
SortStateChangeMonitorsIfNecessary(i);
ref var listener = ref monitorsForDevice.listeners[i];
if (listener.control == control && listener.monitor == monitor)
monitorsForDevice.signalled.SetBit(i);
}
}
public unsafe void FireStateChangeNotifications()
{
var time = m_Runtime.currentTime;
var count = Math.Min(m_StateChangeMonitors.LengthSafe(), m_DevicesCount);
for (var i = 0; i < count; ++i)
FireStateChangeNotifications(i, time, null);
}
// Record for a timeout installed on a state change monitor.
private struct StateChangeMonitorTimeout
{
public InputControl control;
public double time;
public IInputStateChangeMonitor monitor;
public long monitorIndex;
public int timerIndex;
}
// Maps a single control to an action interested in the control. If
// multiple actions are interested in the same control, we will end up
// processing the control repeatedly but we assume this is the exception
// and so optimize for the case where there's only one action going to
// a control.
//
// Split into two structures to keep data needed only when there is an
// actual value change out of the data we need for doing the scanning.
internal struct StateChangeMonitorListener
{
public InputControl control;
public IInputStateChangeMonitor monitor;
public long monitorIndex;
public uint groupIndex;
}
internal struct StateChangeMonitorsForDevice
{
public MemoryHelpers.BitRegion[] memoryRegions;
public StateChangeMonitorListener[] listeners;
public DynamicBitfield signalled;
public bool needToUpdateOrderingOfMonitors;
public bool needToCompactArrays;
public int count => signalled.length;
public void Add(InputControl control, IInputStateChangeMonitor monitor, long monitorIndex, uint groupIndex)
{
// NOTE: This method must only *append* to arrays. This way we can safely add data while traversing
// the arrays in FireStateChangeNotifications. Note that appending *may* mean that the arrays
// are switched to larger arrays.
// Record listener.
var listenerCount = signalled.length;
ArrayHelpers.AppendWithCapacity(ref listeners, ref listenerCount,
new StateChangeMonitorListener
{ monitor = monitor, monitorIndex = monitorIndex, groupIndex = groupIndex, control = control });
// Record memory region.
ref var controlStateBlock = ref control.m_StateBlock;
var memoryRegionCount = signalled.length;
ArrayHelpers.AppendWithCapacity(ref memoryRegions, ref memoryRegionCount,
new MemoryHelpers.BitRegion(controlStateBlock.byteOffset - control.device.stateBlock.byteOffset,
controlStateBlock.bitOffset, controlStateBlock.sizeInBits));
signalled.SetLength(signalled.length + 1);
needToUpdateOrderingOfMonitors = true;
}
public void Remove(IInputStateChangeMonitor monitor, long monitorIndex, bool deferRemoval)
{
if (listeners == null)
return;
for (var i = 0; i < signalled.length; ++i)
if (ReferenceEquals(listeners[i].monitor, monitor) && listeners[i].monitorIndex == monitorIndex)
{
if (deferRemoval)
{
listeners[i] = default;
memoryRegions[i] = default;
signalled.ClearBit(i);
needToCompactArrays = true;
}
else
{
RemoveAt(i);
}
break;
}
}
public void Clear()
{
// We don't actually release memory we've potentially allocated but rather just reset
// our count to zero.
listeners.Clear(count);
signalled.SetLength(0);
needToCompactArrays = false;
}
public void CompactArrays()
{
for (var i = count - 1; i >= 0; --i)
{
var memoryRegion = memoryRegions[i];
if (memoryRegion.sizeInBits != 0)
continue;
RemoveAt(i);
}
needToCompactArrays = false;
}
private void RemoveAt(int i)
{
var numListeners = count;
var numMemoryRegions = count;
listeners.EraseAtWithCapacity(ref numListeners, i);
memoryRegions.EraseAtWithCapacity(ref numMemoryRegions, i);
signalled.SetLength(count - 1);
}
public void SortMonitorsByIndex()
{
// Insertion sort.
for (var i = 1; i < signalled.length; ++i)
{
for (var j = i; j > 0; --j)
{
// Sort by complexities only to keep the sort stable
// i.e. don't reverse the order of controls which have the same complexity
var firstComplexity = InputActionState.GetComplexityFromMonitorIndex(listeners[j - 1].monitorIndex);
var secondComplexity = InputActionState.GetComplexityFromMonitorIndex(listeners[j].monitorIndex);
if (firstComplexity >= secondComplexity)
break;
listeners.SwapElements(j, j - 1);
memoryRegions.SwapElements(j, j - 1);
// We can ignore the `signalled` array here as we call this method only
// when all monitors are in non-signalled state.
}
}
needToUpdateOrderingOfMonitors = false;
}
}
// NOTE: 'newState' can be a subset of the full state stored at 'oldState'. In this case,
// 'newStateOffsetInBytes' must give the offset into the full state and 'newStateSizeInBytes' must
// give the size of memory slice to be updated.
private unsafe bool ProcessStateChangeMonitors(int deviceIndex, void* newStateFromEvent, void* oldStateOfDevice, uint newStateSizeInBytes, uint newStateOffsetInBytes)
{
if (m_StateChangeMonitors == null)
return false;
// We resize the monitor arrays only when someone adds to them so they
// may be out of sync with the size of m_Devices.
if (deviceIndex >= m_StateChangeMonitors.Length)
return false;
var memoryRegions = m_StateChangeMonitors[deviceIndex].memoryRegions;
if (memoryRegions == null)
return false; // No one cares about state changes on this device.
var numMonitors = m_StateChangeMonitors[deviceIndex].count;
var signalled = false;
var signals = m_StateChangeMonitors[deviceIndex].signalled;
var haveChangedSignalsBitfield = false;
// For every memory region that overlaps what we got in the event, compare memory contents
// between the old device state and what's in the event. If the contents different, the
// respective state monitor signals.
var newEventMemoryRegion = new MemoryHelpers.BitRegion(newStateOffsetInBytes, 0, newStateSizeInBytes * 8);
for (var i = 0; i < numMonitors; ++i)
{
var memoryRegion = memoryRegions[i];
// Check if the monitor record has been wiped in the meantime. If so, remove it.
if (memoryRegion.sizeInBits == 0)
{
////REVIEW: Do we really care? It is nice that it's predictable this way but hardly a hard requirement
// NOTE: We're using EraseAtWithCapacity here rather than EraseAtByMovingTail to preserve
// order which makes the order of callbacks somewhat more predictable.
var listenerCount = numMonitors;
var memoryRegionCount = numMonitors;
m_StateChangeMonitors[deviceIndex].listeners.EraseAtWithCapacity(ref listenerCount, i);
memoryRegions.EraseAtWithCapacity(ref memoryRegionCount, i);
signals.SetLength(numMonitors - 1);
haveChangedSignalsBitfield = true;
--numMonitors;
--i;
continue;
}
var overlap = newEventMemoryRegion.Overlap(memoryRegion);
if (overlap.isEmpty || MemoryHelpers.Compare(oldStateOfDevice, (byte*)newStateFromEvent - newStateOffsetInBytes, overlap))
continue;
signals.SetBit(i);
haveChangedSignalsBitfield = true;
signalled = true;
}
if (haveChangedSignalsBitfield)
m_StateChangeMonitors[deviceIndex].signalled = signals;
m_StateChangeMonitors[deviceIndex].needToCompactArrays = false;
return signalled;
}
internal unsafe void FireStateChangeNotifications(int deviceIndex, double internalTime, InputEvent* eventPtr)
{
Debug.Assert(m_StateChangeMonitors != null);
Debug.Assert(m_StateChangeMonitors.Length > deviceIndex);
// NOTE: This method must be safe for mutating the state change monitor arrays from *within*
// NotifyControlStateChanged()! This includes all monitors for the device being wiped
// completely or arbitrary additions and removals having occurred.
ref var signals = ref m_StateChangeMonitors[deviceIndex].signalled;
ref var listeners = ref m_StateChangeMonitors[deviceIndex].listeners;
var time = internalTime - InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup;
// If we don't have an event, gives us as dummy, invalid instance.
// What matters is that InputEventPtr.valid is false for these.
var tempEvent = new InputEvent(new FourCC('F', 'A', 'K', 'E'), InputEvent.kBaseEventSize, -1, internalTime);
if (eventPtr == null)
eventPtr = (InputEvent*)UnsafeUtility.AddressOf(ref tempEvent);
// Call IStateChangeMonitor.NotifyControlStateChange for every monitor that is in
// signalled state.
eventPtr->handled = false;
for (var i = 0; i < signals.length; ++i)
{
if (!signals.TestBit(i))
continue;
var listener = listeners[i];
try
{
listener.monitor.NotifyControlStateChanged(listener.control, time, eventPtr,
listener.monitorIndex);
}
catch (Exception exception)
{
Debug.LogError(
$"Exception '{exception.GetType().Name}' thrown from state change monitor '{listener.monitor.GetType().Name}' on '{listener.control}'");
Debug.LogException(exception);
}
// If the monitor signalled that it has processed the state change, reset all signalled
// state monitors in the same group. This is what causes "SHIFT+B" to prevent "B" from
// also triggering.
if (eventPtr->handled)
{
var groupIndex = listeners[i].groupIndex;
for (var n = i + 1; n < signals.length; ++n)
{
// NOTE: We restrict the preemption logic here to a single monitor. Otherwise,
// we will have to require that group indices are stable *between*
// monitors. Two separate InputActionStates, for example, would have to
// agree on group indices that valid *between* the two states or we end
// up preempting unrelated inputs.
//
// Note that this implies there there is *NO* preemption between singleton
// InputActions. This isn't intuitive.
if (listeners[n].groupIndex == groupIndex && listeners[n].monitor == listener.monitor)
signals.ClearBit(n);
}
// Need to reset it back to false as we may have more signalled state monitors that
// aren't in the same group (i.e. have independent inputs).
eventPtr->handled = false;
}
signals.ClearBit(i);
}
}
private void ProcessStateChangeMonitorTimeouts()
{
if (m_StateChangeMonitorTimeouts.length == 0)
return;
// Go through the list and both trigger expired timers and remove any irrelevant
// ones by compacting the array.
// NOTE: We do not actually release any memory we may have allocated.
var currentTime = m_Runtime.currentTime - InputRuntime.s_CurrentTimeOffsetToRealtimeSinceStartup;
var remainingTimeoutCount = 0;
for (var i = 0; i < m_StateChangeMonitorTimeouts.length; ++i)
{
// If we have reset this entry in RemoveStateChangeMonitorTimeouts(),
// skip over it and let compaction get rid of it.
if (m_StateChangeMonitorTimeouts[i].control == null)
continue;
var timerExpirationTime = m_StateChangeMonitorTimeouts[i].time;
if (timerExpirationTime <= currentTime)
{
var timeout = m_StateChangeMonitorTimeouts[i];
timeout.monitor.NotifyTimerExpired(timeout.control,
currentTime, timeout.monitorIndex, timeout.timerIndex);
// Compaction will get rid of the entry.
}
else
{
// Rather than repeatedly calling RemoveAt() and thus potentially
// moving the same data over and over again, we compact the array
// on the fly and move entries in the array down as needed.
if (i != remainingTimeoutCount)
m_StateChangeMonitorTimeouts[remainingTimeoutCount] = m_StateChangeMonitorTimeouts[i];
++remainingTimeoutCount;
}
}
m_StateChangeMonitorTimeouts.SetLength(remainingTimeoutCount);
}
}
}