Singularity/Library/PackageCache/com.unity.render-pipelines..../ShaderLibrary/Color.hlsl
2024-05-06 11:45:45 -07:00

769 lines
20 KiB
HLSL

#ifndef UNITY_COLOR_INCLUDED
#define UNITY_COLOR_INCLUDED
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
#pragma warning (disable : 3205) // conversion of larger type to smaller
#endif
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/ACES.hlsl"
//-----------------------------------------------------------------------------
// Gamma space - Assume positive values
//-----------------------------------------------------------------------------
// Gamma20
real Gamma20ToLinear(real c)
{
return c * c;
}
real3 Gamma20ToLinear(real3 c)
{
return c.rgb * c.rgb;
}
real4 Gamma20ToLinear(real4 c)
{
return real4(Gamma20ToLinear(c.rgb), c.a);
}
real LinearToGamma20(real c)
{
return sqrt(c);
}
real3 LinearToGamma20(real3 c)
{
return sqrt(c.rgb);
}
real4 LinearToGamma20(real4 c)
{
return real4(LinearToGamma20(c.rgb), c.a);
}
// Gamma22
real Gamma22ToLinear(real c)
{
return PositivePow(c, 2.2);
}
real3 Gamma22ToLinear(real3 c)
{
return PositivePow(c.rgb, real3(2.2, 2.2, 2.2));
}
real4 Gamma22ToLinear(real4 c)
{
return real4(Gamma22ToLinear(c.rgb), c.a);
}
real LinearToGamma22(real c)
{
return PositivePow(c, 0.454545454545455);
}
real3 LinearToGamma22(real3 c)
{
return PositivePow(c.rgb, real3(0.454545454545455, 0.454545454545455, 0.454545454545455));
}
real4 LinearToGamma22(real4 c)
{
return real4(LinearToGamma22(c.rgb), c.a);
}
// sRGB
real SRGBToLinear(real c)
{
#if defined(UNITY_COLORSPACE_GAMMA) && REAL_IS_HALF
c = min(c, 100.0); // Make sure not to exceed HALF_MAX after the pow() below
#endif
real linearRGBLo = c / 12.92;
real linearRGBHi = PositivePow((c + 0.055) / 1.055, 2.4);
real linearRGB = (c <= 0.04045) ? linearRGBLo : linearRGBHi;
return linearRGB;
}
real2 SRGBToLinear(real2 c)
{
#if defined(UNITY_COLORSPACE_GAMMA) && REAL_IS_HALF
c = min(c, 100.0); // Make sure not to exceed HALF_MAX after the pow() below
#endif
real2 linearRGBLo = c / 12.92;
real2 linearRGBHi = PositivePow((c + 0.055) / 1.055, real2(2.4, 2.4));
real2 linearRGB = (c <= 0.04045) ? linearRGBLo : linearRGBHi;
return linearRGB;
}
real3 SRGBToLinear(real3 c)
{
#if defined(UNITY_COLORSPACE_GAMMA) && REAL_IS_HALF
c = min(c, 100.0); // Make sure not to exceed HALF_MAX after the pow() below
#endif
real3 linearRGBLo = c / 12.92;
real3 linearRGBHi = PositivePow((c + 0.055) / 1.055, real3(2.4, 2.4, 2.4));
real3 linearRGB = (c <= 0.04045) ? linearRGBLo : linearRGBHi;
return linearRGB;
}
real4 SRGBToLinear(real4 c)
{
return real4(SRGBToLinear(c.rgb), c.a);
}
real LinearToSRGB(real c)
{
real sRGBLo = c * 12.92;
real sRGBHi = (PositivePow(c, 1.0/2.4) * 1.055) - 0.055;
real sRGB = (c <= 0.0031308) ? sRGBLo : sRGBHi;
return sRGB;
}
real2 LinearToSRGB(real2 c)
{
real2 sRGBLo = c * 12.92;
real2 sRGBHi = (PositivePow(c, real2(1.0/2.4, 1.0/2.4)) * 1.055) - 0.055;
real2 sRGB = (c <= 0.0031308) ? sRGBLo : sRGBHi;
return sRGB;
}
real3 LinearToSRGB(real3 c)
{
real3 sRGBLo = c * 12.92;
real3 sRGBHi = (PositivePow(c, real3(1.0/2.4, 1.0/2.4, 1.0/2.4)) * 1.055) - 0.055;
real3 sRGB = (c <= 0.0031308) ? sRGBLo : sRGBHi;
return sRGB;
}
real4 LinearToSRGB(real4 c)
{
return real4(LinearToSRGB(c.rgb), c.a);
}
// TODO: Seb - To verify and refit!
// Ref: http://chilliant.blogspot.com.au/2012/08/srgb-approximations-for-hlsl.html?m=1
real FastSRGBToLinear(real c)
{
return c * (c * (c * 0.305306011 + 0.682171111) + 0.012522878);
}
real2 FastSRGBToLinear(real2 c)
{
return c * (c * (c * 0.305306011 + 0.682171111) + 0.012522878);
}
real3 FastSRGBToLinear(real3 c)
{
return c * (c * (c * 0.305306011 + 0.682171111) + 0.012522878);
}
real4 FastSRGBToLinear(real4 c)
{
return real4(FastSRGBToLinear(c.rgb), c.a);
}
real FastLinearToSRGB(real c)
{
return saturate(1.055 * PositivePow(c, 0.416666667) - 0.055);
}
real2 FastLinearToSRGB(real2 c)
{
return saturate(1.055 * PositivePow(c, 0.416666667) - 0.055);
}
real3 FastLinearToSRGB(real3 c)
{
return saturate(1.055 * PositivePow(c, 0.416666667) - 0.055);
}
real4 FastLinearToSRGB(real4 c)
{
return real4(FastLinearToSRGB(c.rgb), c.a);
}
//-----------------------------------------------------------------------------
// Color space
//-----------------------------------------------------------------------------
// Convert rgb to luminance
// with rgb in linear space with sRGB primaries and D65 white point
#ifndef BUILTIN_TARGET_API
real Luminance(real3 linearRgb)
{
return dot(linearRgb, real3(0.2126729, 0.7151522, 0.0721750));
}
#endif
real Luminance(real4 linearRgba)
{
return Luminance(linearRgba.rgb);
}
real AcesLuminance(real3 linearRgb)
{
return dot(linearRgb, AP1_RGB2Y);
}
real AcesLuminance(real4 linearRgba)
{
return AcesLuminance(linearRgba.rgb);
}
// Scotopic luminance approximation - input is in XYZ space
// Note: the range of values returned is approximately [0;4]
// "A spatial postprocessing algorithm for images of night scenes"
// William B. Thompson, Peter Shirley, and James A. Ferwerda
real ScotopicLuminance(real3 xyzRgb)
{
float X = xyzRgb.x;
float Y = xyzRgb.y;
float Z = xyzRgb.z;
return Y * (1.33 * (1.0 + (Y + Z) / X) - 1.68);
}
real ScotopicLuminance(real4 xyzRgba)
{
return ScotopicLuminance(xyzRgba.rgb);
}
// This function take a rgb color (best is to provide color in sRGB space)
// and return a YCoCg color in [0..1] space for 8bit (An offset is apply in the function)
// Ref: http://www.nvidia.com/object/real-time-ycocg-dxt-compression.html
#define YCOCG_CHROMA_BIAS (128.0 / 255.0)
real3 RGBToYCoCg(real3 rgb)
{
real3 YCoCg;
YCoCg.x = dot(rgb, real3(0.25, 0.5, 0.25));
YCoCg.y = dot(rgb, real3(0.5, 0.0, -0.5)) + YCOCG_CHROMA_BIAS;
YCoCg.z = dot(rgb, real3(-0.25, 0.5, -0.25)) + YCOCG_CHROMA_BIAS;
return YCoCg;
}
real3 YCoCgToRGB(real3 YCoCg)
{
real Y = YCoCg.x;
real Co = YCoCg.y - YCOCG_CHROMA_BIAS;
real Cg = YCoCg.z - YCOCG_CHROMA_BIAS;
real3 rgb;
rgb.r = Y + Co - Cg;
rgb.g = Y + Cg;
rgb.b = Y - Co - Cg;
return rgb;
}
// Following function can be use to reconstruct chroma component for a checkboard YCoCg pattern
// Reference: The Compact YCoCg Frame Buffer
real YCoCgCheckBoardEdgeFilter(real centerLum, real2 a0, real2 a1, real2 a2, real2 a3)
{
real4 lum = real4(a0.x, a1.x, a2.x, a3.x);
// Optimize: real4 w = 1.0 - step(30.0 / 255.0, abs(lum - centerLum));
real4 w = 1.0 - saturate((abs(lum.xxxx - centerLum) - 30.0 / 255.0) * HALF_MAX);
real W = w.x + w.y + w.z + w.w;
// handle the special case where all the weights are zero.
return (W == 0.0) ? a0.y : (w.x * a0.y + w.y* a1.y + w.z* a2.y + w.w * a3.y) / W;
}
// Converts linear RGB to LMS
// Full float precision to avoid precision artefact when using ACES tonemapping
float3 LinearToLMS(float3 x)
{
const real3x3 LIN_2_LMS_MAT = {
3.90405e-1, 5.49941e-1, 8.92632e-3,
7.08416e-2, 9.63172e-1, 1.35775e-3,
2.31082e-2, 1.28021e-1, 9.36245e-1
};
return mul(LIN_2_LMS_MAT, x);
}
// Full float precision to avoid precision artefact when using ACES tonemapping
float3 LMSToLinear(float3 x)
{
const real3x3 LMS_2_LIN_MAT = {
2.85847e+0, -1.62879e+0, -2.48910e-2,
-2.10182e-1, 1.15820e+0, 3.24281e-4,
-4.18120e-2, -1.18169e-1, 1.06867e+0
};
return mul(LMS_2_LIN_MAT, x);
}
// Hue, Saturation, Value
// Ranges:
// Hue [0.0, 1.0]
// Sat [0.0, 1.0]
// Lum [0.0, HALF_MAX]
real3 RgbToHsv(real3 c)
{
const real4 K = real4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);
real4 p = lerp(real4(c.bg, K.wz), real4(c.gb, K.xy), step(c.b, c.g));
real4 q = lerp(real4(p.xyw, c.r), real4(c.r, p.yzx), step(p.x, c.r));
real d = q.x - min(q.w, q.y);
const real e = 1.0e-4;
return real3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);
}
real3 HsvToRgb(real3 c)
{
const real4 K = real4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
real3 p = abs(frac(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * lerp(K.xxx, saturate(p - K.xxx), c.y);
}
real RotateHue(real value, real low, real hi)
{
return (value < low)
? value + hi
: (value > hi)
? value - hi
: value;
}
// Soft-light blending mode use for split-toning. Works in HDR as long as `blend` is [0;1] which is
// fine for our use case.
float3 SoftLight(float3 base, float3 blend)
{
float3 r1 = 2.0 * base * blend + base * base * (1.0 - 2.0 * blend);
float3 r2 = sqrt(base) * (2.0 * blend - 1.0) + 2.0 * base * (1.0 - blend);
float3 t = step(0.5, blend);
return r2 * t + (1.0 - t) * r1;
}
// SMPTE ST.2084 (PQ) transfer functions
// 1.0 = 100nits, 100.0 = 10knits
#define DEFAULT_MAX_PQ 100.0
struct ParamsPQ
{
real N, M;
real C1, C2, C3;
};
static const ParamsPQ PQ =
{
2610.0 / 4096.0 / 4.0, // N
2523.0 / 4096.0 * 128.0, // M
3424.0 / 4096.0, // C1
2413.0 / 4096.0 * 32.0, // C2
2392.0 / 4096.0 * 32.0, // C3
};
real3 LinearToPQ(real3 x, real maxPQValue)
{
x = PositivePow(x / maxPQValue, PQ.N);
real3 nd = (PQ.C1 + PQ.C2 * x) / (1.0 + PQ.C3 * x);
return PositivePow(nd, PQ.M);
}
real3 LinearToPQ(real3 x)
{
return LinearToPQ(x, DEFAULT_MAX_PQ);
}
real3 PQToLinear(real3 x, real maxPQValue)
{
x = PositivePow(x, rcp(PQ.M));
real3 nd = max(x - PQ.C1, 0.0) / (PQ.C2 - (PQ.C3 * x));
return PositivePow(nd, rcp(PQ.N)) * maxPQValue;
}
real3 PQToLinear(real3 x)
{
return PQToLinear(x, DEFAULT_MAX_PQ);
}
// Alexa LogC converters (El 1000)
// See http://www.vocas.nl/webfm_send/964
// Max range is ~58.85666
// Set to 1 to use more precise but more expensive log/linear conversions. I haven't found a proper
// use case for the high precision version yet so I'm leaving this to 0.
#define USE_PRECISE_LOGC 0
struct ParamsLogC
{
real cut;
real a, b, c, d, e, f;
};
static const ParamsLogC LogC =
{
0.011361, // cut
5.555556, // a
0.047996, // b
0.244161, // c
0.386036, // d
5.301883, // e
0.092819 // f
};
real LinearToLogC_Precise(real x)
{
real o;
if (x > LogC.cut)
o = LogC.c * log10(max(LogC.a * x + LogC.b, 0.0)) + LogC.d;
else
o = LogC.e * x + LogC.f;
return o;
}
// Full float precision to avoid precision artefact when using ACES tonemapping
float3 LinearToLogC(float3 x)
{
#if USE_PRECISE_LOGC
return real3(
LinearToLogC_Precise(x.x),
LinearToLogC_Precise(x.y),
LinearToLogC_Precise(x.z)
);
#else
return LogC.c * log10(max(LogC.a * x + LogC.b, 0.0)) + LogC.d;
#endif
}
real LogCToLinear_Precise(real x)
{
real o;
if (x > LogC.e * LogC.cut + LogC.f)
o = (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
else
o = (x - LogC.f) / LogC.e;
return o;
}
// Full float precision to avoid precision artefact when using ACES tonemapping
float3 LogCToLinear(float3 x)
{
#if USE_PRECISE_LOGC
return real3(
LogCToLinear_Precise(x.x),
LogCToLinear_Precise(x.y),
LogCToLinear_Precise(x.z)
);
#else
return (pow(10.0, (x - LogC.d) / LogC.c) - LogC.b) / LogC.a;
#endif
}
//-----------------------------------------------------------------------------
// Utilities
//-----------------------------------------------------------------------------
real3 Desaturate(real3 value, real saturation)
{
// Saturation = Colorfulness / Brightness.
// https://munsell.com/color-blog/difference-chroma-saturation/
real mean = Avg3(value.r, value.g, value.b);
real3 dev = value - mean;
return mean + dev * saturation;
}
// Fast reversible tonemapper
// http://gpuopen.com/optimized-reversible-tonemapper-for-resolve/
real FastTonemapPerChannel(real c)
{
return c * rcp(c + 1.0);
}
real2 FastTonemapPerChannel(real2 c)
{
return c * rcp(c + 1.0);
}
real3 FastTonemap(real3 c)
{
return c * rcp(Max3(c.r, c.g, c.b) + 1.0);
}
real4 FastTonemap(real4 c)
{
return real4(FastTonemap(c.rgb), c.a);
}
real3 FastTonemap(real3 c, real w)
{
return c * (w * rcp(Max3(c.r, c.g, c.b) + 1.0));
}
real4 FastTonemap(real4 c, real w)
{
return real4(FastTonemap(c.rgb, w), c.a);
}
real FastTonemapPerChannelInvert(real c)
{
return c * rcp(1.0 - c);
}
real2 FastTonemapPerChannelInvert(real2 c)
{
return c * rcp(1.0 - c);
}
real3 FastTonemapInvert(real3 c)
{
return c * rcp(1.0 - Max3(c.r, c.g, c.b));
}
real4 FastTonemapInvert(real4 c)
{
return real4(FastTonemapInvert(c.rgb), c.a);
}
#ifndef SHADER_API_GLES
// 3D LUT grading
// scaleOffset = (1 / lut_size, lut_size - 1)
real3 ApplyLut3D(TEXTURE3D_PARAM(tex, samplerTex), float3 uvw, float2 scaleOffset)
{
uvw.xyz = uvw.xyz * scaleOffset.yyy * scaleOffset.xxx + scaleOffset.xxx * 0.5;
return SAMPLE_TEXTURE3D_LOD(tex, samplerTex, uvw, 0.0).rgb;
}
#endif
// 2D LUT grading
// scaleOffset = (1 / lut_width, 1 / lut_height, lut_height - 1)
real3 ApplyLut2D(TEXTURE2D_PARAM(tex, samplerTex), float3 uvw, float3 scaleOffset)
{
// Strip format where `height = sqrt(width)`
uvw.z *= scaleOffset.z;
float shift = floor(uvw.z);
uvw.xy = uvw.xy * scaleOffset.z * scaleOffset.xy + scaleOffset.xy * 0.5;
uvw.x += shift * scaleOffset.y;
uvw.xyz = lerp(
SAMPLE_TEXTURE2D_LOD(tex, samplerTex, uvw.xy, 0.0).rgb,
SAMPLE_TEXTURE2D_LOD(tex, samplerTex, uvw.xy + float2(scaleOffset.y, 0.0), 0.0).rgb,
uvw.z - shift
);
return uvw;
}
// Returns the default value for a given position on a 2D strip-format color lookup table
// params = (lut_height, 0.5 / lut_width, 0.5 / lut_height, lut_height / lut_height - 1)
real3 GetLutStripValue(float2 uv, float4 params)
{
uv -= params.yz;
real3 color;
color.r = frac(uv.x * params.x);
color.b = uv.x - color.r / params.x;
color.g = uv.y;
return color * params.w;
}
// Neutral tonemapping (Hable/Hejl/Frostbite)
// Input is linear RGB
// More accuracy to avoid NaN on extremely high values.
float3 NeutralCurve(float3 x, real a, real b, real c, real d, real e, real f)
{
return ((x * (a * x + c * b) + d * e) / (x * (a * x + b) + d * f)) - e / f;
}
#define TONEMAPPING_CLAMP_MAX 435.18712 //(-b + sqrt(b * b - 4 * a * (HALF_MAX - d * f))) / (2 * a * whiteScale)
//Extremely high values cause NaN output when using fp16, we clamp to avoid the performace hit of switching to fp32
//The overflow happens in (x * (a * x + b) + d * f) of the NeutralCurve, highest value that avoids fp16 precision errors is ~571.56873
//Since whiteScale is constant (~1.31338) max input is ~435.18712
real3 NeutralTonemap(real3 x)
{
// Tonemap
const real a = 0.2;
const real b = 0.29;
const real c = 0.24;
const real d = 0.272;
const real e = 0.02;
const real f = 0.3;
const real whiteLevel = 5.3;
const real whiteClip = 1.0;
#if defined(SHADER_API_MOBILE)
x = min(x, TONEMAPPING_CLAMP_MAX);
#endif
real3 whiteScale = (1.0).xxx / NeutralCurve(whiteLevel, a, b, c, d, e, f);
x = NeutralCurve(x * whiteScale, a, b, c, d, e, f);
x *= whiteScale;
// Post-curve white point adjustment
x /= whiteClip.xxx;
return x;
}
// Raw, unoptimized version of John Hable's artist-friendly tone curve
// Input is linear RGB
real EvalCustomSegment(real x, real4 segmentA, real2 segmentB)
{
const real kOffsetX = segmentA.x;
const real kOffsetY = segmentA.y;
const real kScaleX = segmentA.z;
const real kScaleY = segmentA.w;
const real kLnA = segmentB.x;
const real kB = segmentB.y;
real x0 = (x - kOffsetX) * kScaleX;
real y0 = (x0 > 0.0) ? exp(kLnA + kB * log(x0)) : 0.0;
return y0 * kScaleY + kOffsetY;
}
real EvalCustomCurve(real x, real3 curve, real4 toeSegmentA, real2 toeSegmentB, real4 midSegmentA, real2 midSegmentB, real4 shoSegmentA, real2 shoSegmentB)
{
real4 segmentA;
real2 segmentB;
if (x < curve.y)
{
segmentA = toeSegmentA;
segmentB = toeSegmentB;
}
else if (x < curve.z)
{
segmentA = midSegmentA;
segmentB = midSegmentB;
}
else
{
segmentA = shoSegmentA;
segmentB = shoSegmentB;
}
return EvalCustomSegment(x, segmentA, segmentB);
}
// curve: x: inverseWhitePoint, y: x0, z: x1
real3 CustomTonemap(real3 x, real3 curve, real4 toeSegmentA, real2 toeSegmentB, real4 midSegmentA, real2 midSegmentB, real4 shoSegmentA, real2 shoSegmentB)
{
real3 normX = x * curve.x;
real3 ret;
ret.x = EvalCustomCurve(normX.x, curve, toeSegmentA, toeSegmentB, midSegmentA, midSegmentB, shoSegmentA, shoSegmentB);
ret.y = EvalCustomCurve(normX.y, curve, toeSegmentA, toeSegmentB, midSegmentA, midSegmentB, shoSegmentA, shoSegmentB);
ret.z = EvalCustomCurve(normX.z, curve, toeSegmentA, toeSegmentB, midSegmentA, midSegmentB, shoSegmentA, shoSegmentB);
return ret;
}
// Coming from STP, to replace when STP lands.
#define SAT 8.0f
real3 InvertibleTonemap(real3 x)
{
real y = rcp(real(SAT) + Max3(x.r, x.g, x.b));
return saturate(x * real(y));
}
real3 InvertibleTonemapInverse(real3 x)
{
float y = rcp(max(real(1.0 / 32768.0), saturate(real(1.0 / SAT) - Max3(x.r, x.g, x.b) * real(1.0 / SAT))));
return x * y;
}
// Filmic tonemapping (ACES fitting, unless TONEMAPPING_USE_FULL_ACES is set to 1)
// Input is ACES2065-1 (AP0 w/ linear encoding)
#define TONEMAPPING_USE_FULL_ACES 0
float3 AcesTonemap(float3 aces)
{
#if TONEMAPPING_USE_FULL_ACES
float3 oces = RRT(aces);
float3 odt = ODT_RGBmonitor_100nits_dim(oces);
return odt;
#else
// --- Glow module --- //
float saturation = rgb_2_saturation(aces);
float ycIn = rgb_2_yc(aces);
float s = sigmoid_shaper((saturation - 0.4) / 0.2);
float addedGlow = 1.0 + glow_fwd(ycIn, RRT_GLOW_GAIN * s, RRT_GLOW_MID);
aces *= addedGlow;
// --- Red modifier --- //
float hue = rgb_2_hue(aces);
float centeredHue = center_hue(hue, RRT_RED_HUE);
float hueWeight;
{
//hueWeight = cubic_basis_shaper(centeredHue, RRT_RED_WIDTH);
hueWeight = smoothstep(0.0, 1.0, 1.0 - abs(2.0 * centeredHue / RRT_RED_WIDTH));
hueWeight *= hueWeight;
}
aces.r += hueWeight * saturation * (RRT_RED_PIVOT - aces.r) * (1.0 - RRT_RED_SCALE);
// --- ACES to RGB rendering space --- //
float3 acescg = max(0.0, ACES_to_ACEScg(aces));
// --- Global desaturation --- //
//acescg = mul(RRT_SAT_MAT, acescg);
acescg = lerp(dot(acescg, AP1_RGB2Y).xxx, acescg, RRT_SAT_FACTOR.xxx);
// Luminance fitting of *RRT.a1.0.3 + ODT.Academy.RGBmonitor_100nits_dim.a1.0.3*.
// https://github.com/colour-science/colour-unity/blob/master/Assets/Colour/Notebooks/CIECAM02_Unity.ipynb
// RMSE: 0.0012846272106
#if defined(SHADER_API_SWITCH) // Fix floating point overflow on extremely large values.
const float a = 2.785085 * 0.01;
const float b = 0.107772 * 0.01;
const float c = 2.936045 * 0.01;
const float d = 0.887122 * 0.01;
const float e = 0.806889 * 0.01;
float3 x = acescg;
float3 rgbPost = ((a * x + b)) / ((c * x + d) + e/(x + FLT_MIN));
#else
const float a = 2.785085;
const float b = 0.107772;
const float c = 2.936045;
const float d = 0.887122;
const float e = 0.806889;
float3 x = acescg;
float3 rgbPost = (x * (a * x + b)) / (x * (c * x + d) + e);
#endif
// Scale luminance to linear code value
// float3 linearCV = Y_2_linCV(rgbPost, CINEMA_WHITE, CINEMA_BLACK);
// Apply gamma adjustment to compensate for dim surround
float3 linearCV = darkSurround_to_dimSurround(rgbPost);
// Apply desaturation to compensate for luminance difference
//linearCV = mul(ODT_SAT_MAT, color);
linearCV = lerp(dot(linearCV, AP1_RGB2Y).xxx, linearCV, ODT_SAT_FACTOR.xxx);
// Convert to display primary encoding
// Rendering space RGB to XYZ
float3 XYZ = mul(AP1_2_XYZ_MAT, linearCV);
// Apply CAT from ACES white point to assumed observer adapted white point
XYZ = mul(D60_2_D65_CAT, XYZ);
// CIE XYZ to display primaries
linearCV = mul(XYZ_2_REC709_MAT, XYZ);
return linearCV;
#endif
}
// RGBM encode/decode
static const float kRGBMRange = 8.0;
half4 EncodeRGBM(half3 color)
{
color *= 1.0 / kRGBMRange;
half m = max(max(color.x, color.y), max(color.z, 1e-5));
m = ceil(m * 255) / 255;
return half4(color / m, m);
}
half3 DecodeRGBM(half4 rgbm)
{
return rgbm.xyz * rgbm.w * kRGBMRange;
}
#if SHADER_API_MOBILE || SHADER_API_GLES || SHADER_API_GLES3
#pragma warning (enable : 3205) // conversion of larger type to smaller
#endif
#endif // UNITY_COLOR_INCLUDED